Skip to main content Accessibility help
×
Home

An assessment of deep hot-water drilling as a means to undertake direct measurement and sampling of Antarctic subglacial lakes: experience and lessons learned from the Lake Ellsworth field season 2012/13

  • Martin J. Siegert (a1), Keith Makinson (a2), David Blake (a2), Matt Mowlem (a3) and Neil Ross (a4)...

Abstract

In the early hours of 25 December 2012, an attempt to explore Subglacial Lake Ellsworth, West Antarctica, using a specially designed hot-water drill, was halted. This UK project, involving several universities, the British Antarctic Survey and the National Oceanography Centre, had been in planning for 10 years. The project developed a full blueprint for subglacial lakes research, involving access to the subglacial environment through deep drilling, direct measurement and sampling of water and sediment by the construction of a probe and sediment corer, and environmental protocols to ensure cleanliness in line with international agreements on stewardship and protection of subglacial systems. Drilling was ceased after the main borehole failed to link with a subsurface cavity of water, built up over ∽40 hours. Without this link, insufficient water was available to continue drilling downwards to the lake, ∽3000 m beneath the surface. On return to the UK, an external review of the programme was undertaken to formally assess the reasons for the fieldwork failure, and to make recommendations on the modifications necessary for success. From this review, the Lake Ellsworth programme formulated a pathway along which a second attempt to explore the lake can be developed. Here details of the Lake Ellsworth field experiment, the circumstances that led to its failure and the corrections required are presented. Hot-water drilling is still regarded as the only feasible scheme for assuring clean access to the subglacial environment. The lessons learned from the Lake Ellsworth experience are substantial, however, and demonstrate that considerable technological and methodological advances are necessary for successful future research on subglacial lakes beneath thick (>2 km) ice.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      An assessment of deep hot-water drilling as a means to undertake direct measurement and sampling of Antarctic subglacial lakes: experience and lessons learned from the Lake Ellsworth field season 2012/13
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      An assessment of deep hot-water drilling as a means to undertake direct measurement and sampling of Antarctic subglacial lakes: experience and lessons learned from the Lake Ellsworth field season 2012/13
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      An assessment of deep hot-water drilling as a means to undertake direct measurement and sampling of Antarctic subglacial lakes: experience and lessons learned from the Lake Ellsworth field season 2012/13
      Available formats
      ×

Copyright

References

Hide All
Bentley, C (1996) Water kept liquid by warmth from within. Nature, 381(6584), 645 (doi: 10.1038/381645a0)
Bentley, MJ, Christoffersen, P, Hodgson, DA, Smith, AM, Tulaczyk, S and Le Brocq, AM (2011) Subglacial lake sediments and sedimentary processes: potential archives of ice sheet evolution, past environmental change, and the presence of life. In Siegert, MJ, Kennicutt, MCI and Bindschadler, RA eds. Antarctic sub-glacial aquatic environments. (Geophysical Monograph Series 192) American Geophysical Union, Washington, DC, 83110
Brito, MP, Griffiths, G and Mowlem, M (2012a) Exploring Antarctic subglacial lakes with scientific probes: a formal probabilistic approach for operational risk management. J. Glaciol., 58(212), 10851097 (doi: 10.3189/2012JoG12J007)
Brito, MP, Makinson, K, Tait, A, Hill, C and Griffiths, G (2012b) Reliability Case Notes No. 7. Risk assessment of the hot-water drilling system for accessing subglacial Lake Ellsworth. (NOC Res. Consult. Rep. 28) National Oceanography Centre, Southampton
Brito, MP, Griffiths, G, Mowlem, M and Makinson, K (2013) Estimating and managing blowout risk during access to subglacial Antarctic lakes. Antarct. Sci., 25(1), 107118 (doi: 10.1017/S0954102012000442)
Drewry, DJ and Meldrum, DT (1978) Antarctic airborne radio echo sounding, 1977–78. Polar Rec., 19(120), 267273 (doi: 10.1017/S0032247400018271)
Ellis-Evans, JC and Wynn-Williams, D (1996) A great lake under the ice. Nature, 381(6584), 644646 (doi: 10.1038/381644a0)
Fricker, HA, Scambos, T, Bindschadler, R and Padman, L (2007) An active subglacial water system in West Antarctica mapped from space. Science, 315(5818), 15441548 (doi: 10.1126/science.1136897)
Fricker, HA and 13 others (2011) Siple Coast subglacial aquatic environments: the Whillans Ice Stream Subglacial Access Research Drilling Project. In Siegert, MJ, Kennicutt, MCI and Bindschadler, RA eds. Antarctic subglacial aquatic environments. (Geophysical Monograph Series 192) American Geophysical Union, Washington, DC, 199220
Gow, AJ (1963) Results of measurements in the 309 meter bore hole at Byrd Station, Antarctica. J. Glaciol., 4(36), 771784
Hill, C and Lake Ellsworth Consortium (2013) A review of the subglacial Lake Ellsworth 2012/13 field campaign. In Abstracts from 7th International Workshop on Ice Drilling Technology, 9–13 September 2013, Madison, WI, USA, 23 http://icedrill.org/7th-international-workshop-on-ice-drilling-technology/7-ws-id-t_abstract-book_FINAL.pdf
Kapitsa, AP, Ridley, JK, Robin, GdeQ, Siegert, MJ and Zotikov, I (1996) A large deep freshwater lake beneath the ice of central East Antarctica. Nature, 381(6584), 684686 (doi: 10.1038/381684a0)
Lukin, V and Bulat, S (2011) Vostok subglacial lake: details of Russian plans/activities for drilling and sampling. In Siegert, MJ, Kennicutt, MC II and Bindschadler, RA eds. Antarctic subglacial aquatic environments. (Geophysical Monograph Series 192) American Geophysical Union, Washington, DC, 187197
National Research Council (NRC). Committee on Principles of Environmental Stewardship for the Exploration and Study of Subglacial Environments (2007) Exploration of Antarctic sub-glacial aquatic environments: environmental and scientific stewardship. National Academies Press, Washington, DC
Oswald, GKA and Robin, GdeQ (1973) Lakes beneath the Antarctic ice sheet. Nature, 245(5423), 251254 (doi: 10.1038/245251a0)
Priscu, JC and 9 others (2003) An international plan for Antarctic subglacial lake exploration. Polar Geogr., 3927(1), 6983
Ridley, JK, Cudlip, W and Laxon, SW (1993) Identificationofsubglacial lakes using ERS-1 radar altimeter. J. Glaciol., 39(133), 625634
Robin, GdeQ (1969) Interpretation of radio echo sounding in polar ice sheets. Philos. Trans. R. Soc. London, 265(1166), 437505 (doi: 10.1098/rsta.1969.0063)
Robin, GdeQ, Drewry, DJ and Meldrum, DT (1977) International studies of ice sheet and bedrock. Philos. Trans. R. Soc., Ser. B, 279(963), 185196
Ross, N and 26 others (2011a) Ellsworth Subglacial Lake, West Antarctica: a review of its history and recent field campaigns. In Siegert, MJ, Kennicutt, MC II and Bindschadler, RA eds. Antarctic subglacial aquatic environments. (Geophysical Monograph Series 192) American Geophysical Union, Washington, DC, 221234
Ross, N and 8 others (2011b) Holocene stability of the Amundsen– Weddell ice divide, West Antarctica. Geology, 39(10), 935938 (doi: 10.1130/G31920.1)
Ross, N and 8 others (2014) The Ellsworth Subglacial Highlands: inception and retreat of the West Antarctic Ice Sheet. Geol. Soc. Am. Bull., 126(1–2), 315 (doi: 10.1130/B30794.1)
Siegert, MJ (2002) Which are the most suitable Antarctic subglacial lakes for exploration? Polar Geogr., 26(2), 134146 (doi: 10.1080/789610135)
Siegert, MJ, Dowdeswell, JA, Gorman, MR and McIntyre, NF (1996) An inventory of Antarctic sub-glacial lakes. Antarct. Sci., 8(3), 281286 (doi: /10.1017/S0954102096000405)
Siegert, MJ and 7 others (2004) Subglacial Lake Ellsworth: a candidate for in situ exploration in West Antarctica. Geophys. Res. Lett., 31(23), L23403 (doi: 10.1029/2004GL021477)
Siegert, MJ, Carter, S, Tabacco, I, Popov, S and Blankenship, DD (2005) A revised inventory of Antarctic subglacial lakes. Antarct. Sci., 17(3), 453460 (doi: 10.1017/S0954102005002889)
Siegert, MJ, Popov, S and Studinger, M (2011) Vostok subglacial lake: a review of geophysical data regarding its discovery and topographic setting. In Siegert, MJ, Kennicutt, MC II and Bindschadler, RA eds. Antarctic subglacial aquatic environments. (Geophysical Monograph Series 192) American Geophysical Union, Washington, DC, 4560
Siegert, MJ and 16 others (2012) Clean access, measurement, and sampling of Ellsworth Subglacial Lake: a method for exploring deep Antarctic subglacial lake environments. Rev. Geophys., 50(RG1), RG1003 (doi: 10.1029/2011RG000361)
Wingham, DJ, Siegert, MJ, Shepherd, A and Muir, AS (2006) Rapid discharge connects Antarctic subglacial lakes. Nature, 440(7087), 10331036 (doi: 10.1038/nature04660)
Woodward, J and 9 others (2010) Location for direct access to subglacial Lake Ellsworth: an assessment of geophysical data and modeling. Geophys. Res. Lett., 37(11), L11501 (doi: 10.1029/2010GL042884)
Wright, A and Siegert, M (2012) A fourth inventory of Antarctic subglacial lakes. Antarct. Sci., 24(6), 659664 (doi: 10.1017/S095410201200048X)

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed