Skip to main content Accessibility help
×
Home

50 MHz helicopter-borne radar data for determination of glacier thermal regime in the central Chilean Andes

  • Guisella Gacitúa (a1) (a2), José A. Uribe (a1), Ryan Wilson (a1), Thomas Loriaux (a1), Jorge Hernández (a1) and Andrés Rivera (a1) (a3)...

Abstract

Despite their importance as freshwater reservoirs for downstream river systems, few glaciers in central Chile have been comprehensively surveyed. This study presents ground-penetrating radar (GPR) and field-based observations for characterizing the englacial and basal conditions of Glaciar Olivares Alfa (33°110 S, 70°130 W), central Chilean Andes. Using a 50 MHz radar mounted onto a helicopter platform, data were collected covering large portions of the glacier accumulation and ablation zones. The radar data revealed boundaries of a temperate-ice layer at the base of the eastern body of Glaciar Olivares Alfa which appears to be covered by colder ice that extends throughout large parts of the glacier. The thickness of the temperate ice layer is highly variable across the glacier, being on average 40% of the total ice thickness. Radar data analyses reveal regions of cold ice at the bottom/base of the glacier and also patterns of highly saturated sediments beneath the glacier. Using GPR data, this study represents the most exhaustive analysis of glacier ice structure performed in the central Chilean Andes. The results will enable improved estimations of the glacier’s mass balance and ice dynamics, helping us to understand its further development and its impact on water availability.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      50 MHz helicopter-borne radar data for determination of glacier thermal regime in the central Chilean Andes
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      50 MHz helicopter-borne radar data for determination of glacier thermal regime in the central Chilean Andes
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      50 MHz helicopter-borne radar data for determination of glacier thermal regime in the central Chilean Andes
      Available formats
      ×

Copyright

Corresponding author

Correspondence: Guisella Gacitúa <guisella.gacitua@umag.cl>

References

Hide All
Annan, A, Waller, W, Strangway, D, Rossiter, J, Redman, J and Watts, R (1975) The electromagnetic response of a low-loss, 2-layer, dielectric earth for horizontal electric dipole excitation. Geophysics, 40(2), 285298 (doi: 10.1190/1.1440525)
Ashmore, DW, Bingham, RG, Hindmarsh RCA, Corr HFJ and Joughin, IR (2014) The relationship between sticky spots and radar reflectivity beneath an active West Antarctic ice stream. Ann. Glaciol., 55(67), 2938 (doi: 10.3189/2014AoG67A052)
Bennett, MM and Glasser, NF (2011) Glacial geology: ice sheets and landforms . John Wiley & Sons, Chichester
Bentley, CR, Lord, N and Liu, C (1998) Radar reflections reveal a wet bed beneath stagnant Ice Stream C and frozen bed beneath ridge BC, West Antarctica. J. Glaciol., 44(146), 149156
Bingham, RG and Siegert, MJ (2007) Radar-derived bed roughness characterization of Institute and Möller ice streams, West Antarctica, and comparison with Siple Coast ice streams. Geophys. Res. Lett., 34(21) (doi: 10.1029/2007GL031483)
Björnsson, H (1998) Hydrological characteristics of the drainage system beneath a surging glacier. Nature, 395(6704), 771774 (doi: 10.1038/27384)
Blatter, H and Hutter, K (1991) Polythermal conditions in Arctic glaciers. J. Glaciol., 37(126), 261269
Bogorodsky, VV, Bentley, CR and Gudmandsen, PE (1985) Radio-glaciology . Reidel, Dordrecht
Casassa, G (1995) Glacier inventory in Chile: current status and recent glacier variations. Ann. Glaciol., 21, 317322
Centro de Estudios Científicos (CECs) (2013) Línea de base glaciológica para glaciares de la cuenca alta del Río Olvares y otras cuenas aledañas. (Final report) Centro de Estudios Científicos, Valdivia
Conway, H, Smith, B, Vaswani, P, Matsuoka, K, Rignot, E and Claus, P (2009) A low-frequency ice-penetrating radar system adapted for use from an airplane: test results from Bering and Malaspina Glaciers, Alaska, USA. Ann. Glaciol., 50(51), 9397 (doi: 10.3189/172756409789097487)
Copland, L and Sharp, M (2001) Mapping thermal and hydrological conditions beneath a polythermal glacier with radio-echo sounding. J. Glaciol., 47(157), 232242 (doi: 10.3189/172756501781832377)
Dirección General de Aguas (DGA) (2011) Variaciones recientes de glaciares en Chile, según principales zonas glaciológicas. (Final report)
Dirección General de Aguas, Ministerio de Obras Públicas, Santiago DGA (2012) Estimación de volúmenes de hielo mediante Radio echo sondaje en Chile Central. (Final report)
Dirección General de Aguas (DGA), Ministerio de Obras Públicas, Santiago
Dowdeswell, JA and Evans, S (2004) Investigations of the form and flow of ice sheets and glaciers using radio-echo sounding. Rep. Progr. Phys., 67(10), 1821 (doi: 10.1088/0034-4885/67/10/R03)
Evans, S (1965) Dielectric properties of ice and snow – a review. J. Glaciol., 5, 773792
Falvey, M and Garreaud, RD (2009) Regional cooling in a warming world: recent temperature trends in the southeast Pacific and along the west coast of subtropical South America (1979–2006). J. Geophys. Res., 114(D4) (doi: 10.1029/2008JD010519)
Gades, AM (1998) Spatial and temporal variations of basal conditions beneath glaciers and ice sheets inferred from radio echo-sounding measurements. (PhD thesis, University of Washington)
Gades, AM, Raymond, CF, Conway, H and Jacobel, RW (2000) Bed properties of Siple Dome and adjacent ice streams, West Antarctica, inferred from radio-echo sounding measurements. J. Glaciol., 46(152), 8894 (doi: 10.3189/172756500781833467)
Glen, JW and Paren, JG (1975) The electrical properties of snow and ice. J. Glaciol., 15, 1538
Gulley, J, Benn, D, Screaton, E and Martin, J (2009) Mechanisms of englacial conduit formation and their implications for subglacial recharge. Quat. Sci. Rev., 28(19), 19841999 (doi: 10.1016/j. quascirev.2009.04.002)
Irvine-Fynn, TDL, Hodson, AJ, Moorman, BJ, Vatne, G and Hubbard, AL (2011) Polythermal glacier hydrology: a review. Rev. Geophys., 49, 137 (doi: 10.1029/2010RG000350.1.INTRODUCTION)
Jacobel, RW and Raymond, C (1984) Radio echo-sounding studies of englacial water movement in Variegated Glacier, Alaska. J. Glaciol., 30(104), 2229
Jacobel, RW, Welch, BC, Osterhouse, D, Pettersson, R and MacGregor, JA (2009) Spatial variation of radar-derived basal conditions on Kamb Ice Stream, West Antarctica. Ann. Glaciol., 50(51), 1016
Lliboutry, L (1956) Nieves y glaciares de Chile. Ediciones de la Universidad de Chile, Santiago
MacGregor, JA, Winebrenner, DP, Conway, H, Matsuoka, K, Mayewski, PA and Clow, GD (2007) Modeling englacial radar attenuation at Siple Dome, West Antarctica, using ice chemistry and temperature data. J. Geophys. Res., 112(F3), F03008 (doi: 10.1029/2006JF000717)
MacGregor, JA, Matsuoka, K, Waddington, ED, Winebrenner, DP and Pattyn, F (2012) Spatial variation of englacial radar attenuation: modeling approach and application to the Vostok flowline. J. Geophys. Res. Earth Surf., 117(F3) (doi: 10.1029/2011JF002327)
Marangunic, C (1979) Inventario de glaciares en las Hoyas de los Ríos Mapocho y Colorado, Hoya del Río Maipo, Región Metropolitana. In IV Coloquio Nacional de Ingeniería Hidráulica, vol. 2, 41274140. Sociedad Chilena Ingeniería Hidráulica, Santiago
Matsuoka, K (2011) Pitfalls in radar diagnosis of ice-sheet bed conditions: lessons from englacial attenuation models. Geophys. Res. Lett., 38(5) (doi: 10.1029/2010GL046205)
Matsuoka, K, Thorsteinsson, T, Björnsson H and Waddington, ED (2007) Anisotropic radio-wave scattering from englacial water regimes, Mýrdalsjökull, Iceland. J. Glaciol., 53(182), 473478 (doi: 10.3189/002214307783258422)
Matsuoka, K, MacGregor, J and Pattyn, F (2010) Using englacial radar attenuation to better diagnose the subglacial environment: a review. In Proceedings of the 13th International Conference on Ground Penetrating Radar, 21–25 June 2010, Lecce, Italy (doi: 10.1109/ICGPR.2010.5550161)
Matzler, C (1987) Dielectric properties of freshwater ice at microwave frequencies. J. Phys. D, 20, 16231630 (doi: 10.1088/0022-3727/20/12/013)
Moorman, BJ and Michel, FA (2000) Glacial hydrological system characterization using ground-penetrating radar. Hydrol. Process., 14, 26452667 (doi: 10.1002/1099-1085(20001030) 14:15<2645::AID-HYP84>3.0.CO;2-2)
Oswald, GKA and Gogineni, SP (2008) Recovery of subglacial water extent from Greenland radar survey data. J. Glaciol., 54(184), 94106 (doi: 10.3189/002214308784409107)
Oswald, GKA and Gogineni, SP (2012) Mapping basal melt under the Northern Greenland Ice Sheet. IEEE Trans. Geosci. Remote Sens., 50(2), 585592 (doi: 10.1109/TGRS.2011. 2162072)
Paterson, WSB (1994) The physics of glaciers, 3rd edn. Butterworth-Heinemann, Oxford
Pattyn, F and 6 others (2003) Ice dynamics and basal properties of Sofiyskiy glacier, Altai mountains, Russia, based on DGPS and radio-echo sounding surveys. Ann. Glaciol., 37, 286292 (doi: 10.3189/172756403781815627)
Pattyn, F, Delcourt, C, Samyn, D, De Smedt, B and Nolan, M (2009) Bed properties and hydrological conditions underneath McCall Glacier, Alaska, USA. Ann. Glaciol., 50(51), 8084 (doi: 10.3189/172756409789097559)
Peña, H and Nazarala, B (1987) Snowmelt-runoff simulation model of a central Chile Andean basin with relevant orographic effects. IAHS Publ. 166 (Symposium at Vancouver 1987 – Large Scale Effects of Seasonal Snow Cover), 161172
Peters, M, Blankenship, D and Morse, D (2005) Analysis techniques for coherent airborne radar sounding: application to West Antarctic ice streams. J. Geophys. Res., 110(B6), B06303 (doi: 10.1029/2004JB003222)
Plewes, LA and Hubbard, B (2001) A review of the use of radio-echo sounding in glaciology. Progr. Phys. Geogr., 25(2), 203236 doi: 10.1177/030913330102500203)
Rippin, D, Willis, I, Arnold, N, Hodson, A and Brinkhaus, M (2005) Spatial and temporal variations in surface velocity and basal drag across the tongue of the polythermal glacier midre Lovénbreen, Svalbard. J. Glaciol., 51(175), 588600 (doi: 10.3189/172756505781829089)
Rivera, A, Acuña, C, Casassa, G and Bown, F (2002) Use of remotely sensed and field data to estimate the contribution of Chilean glaciers to eustatic sea-level rise. Ann. Glaciol., 34, 367372
Rivera, A, Acuña, C and Casassa, G (2006) Changing glaciers and their role in earth surface evolution: glacier variations in Central Chile (32°S–41°S). In Knight, PG ed. Glacier science and environmental change. Wiley-Blackwell, Oxford, 246247
Skidmore, ML and Sharp, MJ (1999) Drainage system behaviour of a High-Arctic polythermal glacier. Ann. Glaciol., 28, 209215 (doi: 10.3189/172756499781821922)
Valdivia, P (1984) Inventario de glaciares Andes de Chile central (32°–35°Lat. S.): Hoyas de los Ríos Aconcagua, Maipo, Cachapoal y Tinguiririca. (Technical report) Dirección General de Aguas, Departamento de Hidrología, Ministerio de Obras Públicas, Santiago
Wilson, NJ, Flowers, GE and Mingo, L (2013) Comparison of thermal structure and evolution between neighboring subarctic glaciers. J. Geophys. Res. Earth Surf., 118(3), 14431459 (doi: 10.1002/jgrf.20096)

Keywords

50 MHz helicopter-borne radar data for determination of glacier thermal regime in the central Chilean Andes

  • Guisella Gacitúa (a1) (a2), José A. Uribe (a1), Ryan Wilson (a1), Thomas Loriaux (a1), Jorge Hernández (a1) and Andrés Rivera (a1) (a3)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed