Skip to main content Accessibility help
×
Home

Experience rating with Poisson mixtures

  • Garfield O. Brown (a1) and Winston S. Buckley (a2)

Abstract

We propose a Poisson mixture model for count data to determine the number of groups in a Group Life insurance portfolio consisting of claim numbers or deaths. We take a non-parametric Bayesian approach to modelling this mixture distribution using a Dirichlet process prior and use reversible jump Markov chain Monte Carlo to estimate the number of components in the mixture. Unlike Haastrup, we show that the assumption of identical heterogeneity for all groups may not hold as 88% of the posterior probability is assigned to models with two or three components, and 11% to models with four or five components, whereas models with one component are never visited. Our major contribution is showing how to account for both model uncertainty and parameter estimation within a single framework.

Copyright

Corresponding author

*Correspondence to: Winston S. Buckley, Mathematical Sciences, Bentley University, Waltham, MA 02452, USA. Tel: 781-891-2000; Fax: 781-891-2457; E-mail: winb365@hotmail.com

References

Hide All
Anastasiadis, S. & Chukova, S. (2012). Multivariate insurance models: an overview. Insurance: Mathematics and Economics, 51(1), 222227.
Bermúdez, L. & Karlis, D. (2011). Bayesian multivariate Poisson models for insurance ratemaking. Insurance: Mathematics and Economics, 48(2), 226236.
Bermúdez, L. & Karlis, D. (2012). A finite mixture of bivariate Poisson regression models with an application to insurance ratemaking. Computational Statistics and Data Analysis, 56(12), 39883999.
Brooks, S.P. & Giudici, P. (1999). Diagnosing convergence of reversible jump MCMC algorithms. In J.M. Bernardo, J.O. Berger, A.P. Dawid & A.F.M. Smith, (Eds.), Bayesian Statistics 6 (pp. 733742). Oxford University Press, Oxford.
Brooks, S.P., Giudici, P. & Philippe, A. (2003 a). Nonparametric convergence assessment for MCMC model selection. Journal of Computational and Graphical Statistics, 12, 122.
Brooks, S.P., Giudici, P. & Roberts, G.O. (2003 b). Efficient construction of reversible jump MCMC proposal distributions (with discussion). Journal of the Royal Statistical Society, Series B, 65(1), 355.
Carlin, B.P. & Chib, S. (1995). Bayesian model choice via Markov chain Monte Carlo methods. Journal of the Royal Statistical Society, Series B, 57, 473484.
Casella, G., Robert, C.P. & Wells, M.T. (2000). Mixture models, latent variables and partitioned importance sampling, technical report no. 2000–03, CREST, INSEE, Paris.
Dellaportas, P., Forster, J.J. & Ntzoufras, I. (2000). Bayesian variable selection using the Gibbs sampler. In D.K. Dey, S. Ghosh & B. Mallick (Eds.), Generalized Linear Models: A Bayesian Perspective (pp. 271--286). New York: Marcel Dekker.
Dellaportas, P., Forster, J.J. & Ntzoufras, I. (2003). On Bayesian model and variable selection using MCMC. Statistics and Computing, 12, 2736.
Dellaportas, P. & Karlis, D. (2001). A simulation approach to nonparametric empirical Bayes analysis. International Statistical Review, 69(1), 6379.
Dellaportas, P., Karlis, D. & Xekalaki, E. (2011). Bayesian analysis of finite Poisson mixtures. British Journal of Science, 1(1), 96110.
Donnelly, C. & Wüthrich, M. (2012). Bayesian prediction of disability insurance frequencies using economic indicators. Annals of Actuarial Science, 6(2), 381400.
England, P.D., Verrall, R.J., & Wüthrich, M.V. (2012). Bayesian Overdispersed Poisson Model and the Bornhuetter-Ferguson Claim Reserving Method. Annals of Actuarial Science, 6(2), 258283.
Frühwirth-Schnatter, S. (2006). Finite Mixture and Markov Switching Models. Springer Series in Statistics. New York: Springer, ISBN-10: 0-387-32909-9.
Green, P.J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika, 82(4), 711732.
Green, P.J. & Richardson, S. (2001). Modelling heterogeneity with and without the Dirichlet process. Scandinavian Journal of Statistics, 28(2), 355375.
Green, P.J. & Richardson, S. (2002). Hidden Markov models and disease mapping. Journal of the American Statistical Society, 97(460), 10551070.
Haastrup, S. (2000). Comparison of some Bayesian analyses of heterogeneity in group life insurance. Scandinavian Actuarial Journal, 2000, 216.
Jewell, W.S. (1974). Credible means are exact Bayesian for exponential families. ASTIN Bulletin, 8(1), 7790.
Katsis, A. & Ntzoufras, I. (2005). Bayesian hypothesis testing for the distribution of insurance claim counts using the Gibbs sampler. Journal of Computational Methods in Science and Engineering, 5, 201214.
McLachlan, G. & Peel, D. (2000). Finite Mixture Models. Wiley-Interscience.
Norberg, R. (1989). Experience rating in group life insurance. Scandinavian Actuarial Journal, 1989, 194224.
Ntzoufras, I. & Dellaportas, P. (2002). Bayesian modelling of outstanding liabilities incorporating claim count uncertainty. North American Actuarial Journal, 6(1), 113128.
Ntzoufras, I., Katsis, A. & Karlis, A. (2005). Bayesian assessment of the distribution of insurance claim counts using the reversible jump algorithm. North American Actuarial Journal, 9, 90105.
Phillips, D.B. & Smith, A.F.M. (1996). Bayesian model comparison via jump diffusions. In. W.R. Gilks, S. Richardson & D.J. Spiegelhalter (Eds.), Markov Chain Monte Carlo in Practice (pp. 215239). Chapman and Hall.
Puustelli, A., Koskinen, L. & Luoma, A. (2008). Bayesian modelling of financial guarantee insurance. Insurance: Mathematics and Economics, 43(2), 245254.
Robert, C.P. & Casella, G. (1999). Monte Carlo Statistical Methods. Springer.
Stephens, M. (2000). Bayesian analysis of mixture models with an unknown number of components – an alternative to reversible jump methods. Annals of Statistics, 28(1), 4074.
Streftaris, G. & Worton, B. (2008). Efficient and accurate approximate Bayesian inference with an application to insurance data. Computational Statistics and Data Analysis, 52(5), 26042622.
Titterington, D.M., Smith, A.F.M. & Makov, U.E. (1990). Statistical Analysis of Finite Mixture Distributions. Wiley, New York, NY.
Tremblay, L. (1992). Using the Poisson inverse Gaussian in bonus-malus systems. ASTIN Bulletin, 22(1), 97106.
Verrall, R.J., & Wüthrich, M.V. (2012). Reversible jump Markov chain Monte Carlo method for parameter reduction in claims reserving. North American Actuarial Journal, 16(2), 240259.
Viallefont, V., Richardson, S. & Green, P.J. (2002). Bayesian analysis of Poisson mixtures. Journal of Nonparametric Statistics, 14(1–2), 181202.
Walhin, J.F. & Paris, J. (1999). Using mixed Poisson processes in connection with bonus-malus systems. ASTIN Bulletin, 29(1), 8199.
Walhin, J.F. & Paris, J. (2000). The true claim amount and frequency distributions within a bonus-malus system. ASTIN Bulletin, 30(2), 391403.

Keywords

Experience rating with Poisson mixtures

  • Garfield O. Brown (a1) and Winston S. Buckley (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed