Skip to main content Accessibility help
×
Home

Chain-Ladder as Maximum Likelihood Revisited

  • D. Kuang, B. Nielsen (a1) and J. P. Nielsen

Abstract

It has long been known that maximum likelihood estimation in a Poisson model reproduces the chain-ladder technique. We revisit this model. A new canonical parametrisation is proposed to circumvent the inherent identification problem in the parametrisation. The maximum likelihood estimators for the canonical parameter are simple, interpretable and easy to derive. The boundary problem where all observations in one particular development year or on particular underwriting year is zero is also analysed.

Copyright

References

Hide All
Barndorff-Nielsen, O.E. (1978). Information and exponential families. Wiley, New York.
Cox, D.R. & Hinkley, D.V. (1974). Theoretical statistics. Chapman and Hall, London.
Eaton, M.L. (2007). Multivariate statistics: a vector space approach. Lecture Notes–Monograph Series 53. Beachwood, Institute of Mathematical Statistics, OH.
England, P.D. & Verrall, R.J. (1999). Analytic and bootstrap estimates of prediction errors in claims reserving. Insurance: Mathematics and Economics, 25, 281293.
England, P.D. & Verrall, R.J. (2002). Stochastic claims reserving in general insurance. British Actuarial Journal, 8, 519544.
Hachemeister, C.A. & Stanard, J.N. (1975). IBNR claims count estimation with static lag functions. Unpublished manuscript.
Kremer, E. (1982). IBNR-claims and the two-way model of ANOVA. Scandinavian Actuarial Journal, 4755.
Kremer, E. (1985). Einführung in die Versicherungsmathematik. Vandenhoek & Ruprecht, Gottingen.
Kuang, D., Nielsen, B. & Nielsen, J.P. (2008a). Identification of the age-period-cohort model and the extended chain-ladder model. Biometrika, 95, 979986.
Kuang, D., Nielsen, B. & Nielsen, J.P. (2008b). Forecasting with the age-period-cohort model and the extended chain-ladder model. Biometrika, 95, 987991.
Mack, T. (1991). A simple parametric model for rating automobile insurance or estimating IBNR claims reserves. ASTIN Bulletin, 21, 93109.
Mack, T. & Venter, G. (2000). A comparison of stochastic models that reproduce chain-ladder reserve estimates. Insurance: Mathematics and Economics, 26, 101107.
Rockafellar, R.T. (1970). Convex analysis. Princeton University Press, Princeton, NJ.
Verrall, R.J. (1991). Chain-ladder and maximum likelihood. Journal of the Institute of Actuaries, 118, 489499.
Verrall, R.J. (1994). Statistical methods for the chain-ladder technique. Casualty Actuarial Society Forum, Spring 1994, 393446.
Verrall, R.J. & England, P.D. (2000). Comments on “A comparison of stochastic models that reproduce chain-ladder reserve estimates”, by Mack and Venter. Insurance: Mathematics and Economics, 26, 109111.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed