Skip to main content Accessibility help
×
Home

The role of tubificid worms (Limnodrilus hoffmeisteri) in sediment resuspension: a microcosm study

  • Lei Zhang (a1), Jingge Shang (a2), Wei He (a3), Bensheng You (a1) and Chengxin Fan (a1)...

Abstract

Sediment resuspension is an important internal lake process in regulating nutrient cycling and ecosystem structure. Tubificid worms are widely and abundantly distributed in freshwater ecosystems and are able to alter the sediment characteristics. This study was conducted to verify the hypothesis that the alteration of sediments by tubificids may substantially influence the sediment resuspension process. Specifically, we investigated the influence of Limnodrilus hoffmeisteri (Tubificidae) on sediment resuspension using an apparatus designed to simulate the sediment resuspension process in Lake Taihu (China). We examined L. hoffmeisteri according to its density (30 000 ind.m−2) in Lake Taihu and simulated the light (3.2 m.s−1), moderate (5.1 m.s−1) and strong (8.7 m.s−1) wind processes present in Lake Taihu. Tubificids loosened the sediment through their feeding and defecation activities and increased the sediment water content. The appearance of tubificids increased the suspended solids (SS) in a 1.6 m water column under all three wind processes. During the sedimentation process, SS decreased rapidly in both the control and tubificid treatments. The total SS in the water column was significantly increased by tubificids and it changed significantly with time. In addition, the small size particles of the SS in the tubificid treatment were higher than that in the control. So, the appearance of tubificid worms (L. hoffmeisteri) enhanced sediment resuspension and raised the proportion of small size particles in SS.

Copyright

Corresponding author

*Corresponding author: cxfan@niglas.ac.cn; laoshuldudu@163.com

References

Hide All
[1]Amaro, T.P.F., Duineveld, G.C.A., Bergman, M.J.N., Witbaard, R. and Scheffer, M., 2007. The consequences of changes in abundance of Callianassa subterranea and Amphiura filiformis on sediment erosion at the Frisian Front (south-eastern North Sea). Hydrobiologia, 589, 273285.
[2]Bale, A.J., Widdows, J., Harris, C.B. and Stephens, J.A., 2006. Measurements of the critical erosion threshold of surface sediments along the Tamar Estuary using a mini-annular flume. Cont. Shelf Res., 26, 12061216.
[3]Bloesch, J., 1995. Mechanisms, measurement and importance of sediment resuspension in lakes. Mar. Freshw. Res., 46, 295304.
[4]Cai, Y., Gong, Z. and Qin, B., 2010. Community structure and diversity of macrozoobenthos in Lake Taihu, a large shallow eutrophic lake in China. Biodivers. Sci., 18, 5059.
[5]Ciutat, A., Weber, O., Gérino, M. and Boudou, A., 2006. Stratigraphic effects of tubificids in freshwater sediments: a kinetic study based on X-ray images and grain-size analysis. Acta Oecol., 30, 228237.
[6]Couceiro, F., Fones, G.R., Thompson, C.E.L., Statham, P.J., Sivyer, D.B., Parker, R., Kelly-Gerreyn, B.A. and Amos, C.L., 2013. Impact of resuspension of cohesive sediments at the Oyster Grounds (North Sea) on nutrient exchange across the sediment–water interface. Biogeochemistry, 113, 3752.
[7]Dafoe, L.T., Rygh, A.L., Yang, B., Gingras, M.K. and Pemberton, S.G., 2011. A new technique for assessing tubificid burrowing activities, and recognition of biogenic grading formed by these oligochaetes. Palaios, 26, 6680.
[8]Davis, R.B., 1974a. Stratigraphic effects of tubificids in profundal lake sediments. Limnol. Oceanogr., 19, 466488.
[9]Davis, R.B., 1974b. Tubificids alter profiles of redox potential and pH in profundal lake sediment. Limnol. Oceanogr., 19, 342346.
[10]de Lucas Pardo, M.A., Bakker, M., van Kessel, T., Cozzoli, F. and Winterwerp, J.C., 2013. Erodibility of soft freshwater sediments in Markermeer: the role of bioturbation by meiobenthic fauna. Ocean Dyn., 63, 11371150.
[11]de Vicente, I., Cruz-Pizarro, L. and Rueda, F.J., 2010. Sediment resuspension in two adjacent shallow coastal lakes: controlling factors and consequences on phosphate dynamics. Aquat. Sci., 72, 2131.
[12]Evans, R.D., 1994. Empirical evidence of the importance of sediment resuspension in lakes. Hydrobiologia, 284, 512.
[13]Fernandes, S., Sobral, P. and Costa, M.H., 2006. Nereis diversicolor effect on the stability of cohesive intertidal sediments. Aquat. Ecol., 40, 567579.
[14]Flecker, A.S., 1996. Ecosystem engineering by a dominant detritivore in a diverse tropical stream. Ecology, 77, 18451854.
[15]Fukuhara, H., 1987. The effect of tubificids and chironomids on particle redistribution of lake sediment. Ecol. Res., 2, 255264.
[16]Grabowski, R.C., Droppo, I.G. and Wharton, G., 2011. Erodibility of cohesive sediment: the importance of sediment properties. Earth-Sci. Rev., 105, 101120.
[17]Hu, C., Hu, W., Zhang, F., Hu, Z., Li, X. and Chen, Y., 2006. Sediment resuspension in the Lake Taihu, China. Chin. Sci. Bull., 51, 731737.
[18]James, W.F., Best, E.P. and Barko, J.W., 2004. Sediment resuspension and light attenuation in Peoria Lake: can macrophytes improve water quality in this shallow system? Hydrobiologia, 515, 193201.
[19]Kalnejais, L.H., Martin, W.R. and Bothner, M.H., 2010. The release of dissolved nutrients and metals from coastal sediments due to resuspension. Mar. Chem., 121, 224235.
[20]Kang, Y., Song, X. and Liu, Z., 2013. Sediment resuspension dampens the effect of nutrient inputs on the phytoplankton community: a mesocosm experiment study. Hydrobiologia, 710, 117127.
[21]Kaster, J., Val Klump, J., Meyer, J., Krezoski, J. and Smith, M., 1984. Comparison of defecation rates of Limnodrilus hoffmeisteri Claparède (Tubificidae) using two different methods. Hydrobiologia, 111, 181184.
[22]Lewandowski, J. and Hupfer, M., 2005. Effect of macrozoobenthos on two-dimensional small-scale heterogeneity of pore water phosphorus concentrations in lake sediments: a laboratory study. Limnol. Oceanogr., 50, 11061118.
[23]Lin, Y.-T. and Wu, C.H., 2013. Response of bottom sediment stability after carp removal in a small lake. Ann. Limnol. - Int. J. Lim., 49, 157168.
[24]Luettich, R.A., Harleman, D.R.F. and Somlyody, L., 1990. Dynamic behavior of suspended sediment concentrations in a shallow lake perturbed by episodic wind events. Limnol. Oceanogr., 35, 10501067.
[25]Matisoff, G., Fisher, J. and Matis, S., 1985. Effects of benthic macroinvertebrates on the exchange of solutes between sediments and freshwater. Hydrobiologia, 122, 1933.
[26]Matisoff, G., Wang, X. and McCall, P.L., 1999. Biological redistribution of lake sediments by tubificid oligochaetes: Branchiura sowerbyi and Limnodrilus hoffmeisteri/Tubifex tubifex. J. Great Lakes Res., 25, 205219.
[27]Mermillod-Blondin, F., Nogaro, G., Datry, T., Malard, F. and Gibert, J., 2005. Do tubificid worms influence the fate of organic matter and pollutants in stormwater sediments? Environ. Pollut., 134, 5769.
[28]Nogaro, G., Mermillod-Blondin, F., François-Carcaillet, F., Gaudet, J.-P., Lafont, M. and Gibert, J., 2006. Invertebrate bioturbation can reduce the clogging of sediment: an experimental study using infiltration sediment columns. Freshw. Biol., 51, 14581473.
[29]Nogaro, G., Mermillod-Blondin, F., Montuelle, B., Boisson, J.-C., Lafont, M., Volat, B. and Gibert, J., 2007. Do tubificid worms influence organic matter processing and fate of pollutants in stormwater sediments deposited at the surface of infiltration systems? Chemosphere, 70, 315328.
[30]Orvain, F., Sauriau, P.G., Bacher, C. and Prineau, M., 2006. The influence of sediment cohesiveness on bioturbation effects due to Hydrobia ulvae on the initial erosion of intertidal sediments: a study combining flume and model approaches. J. Sea Res., 55, 5473.
[31]Qin, B., 2008. Lake Taihu, China: Dynamics and Environmental Change, Springer, The Netherlands.
[32]Rodriguez, P., Martinez-Madrid, M. and Arrate, J.A., Navarro, E., 2001. Selective feeding by the aquatic oligochaete Tubifex tubifex (Tubificidae, Clitellata). Hydrobiologia, 463, 133140.
[33]Schallenberg, M. and Burns, C.W., 2004. Effects of sediment resuspension on phytoplankton production: teasing apart the influences of light, nutrients and algal entrainment. Freshwat. Biol., 49, 143159.
[34]Scheffer, M., Portielje, R. and Zambrano, L., 2003. Fish facilitate wave resuspension of sediment. Limnol. Oceanogr., 48, 19201926.
[35]Sgro, L., Mistri, M. and Widdows, J., 2005. Impact of the infaunal Manila clam, Ruditapes philippinarum, on sediment stability. Hydrobiologia, 550, 175182.
[36]Song, X., Liu, Z., Yang, G. and Chen, Y., 2010. Effects of resuspension and eutrophication level on summer phytoplankton dynamics in two hypertrophic areas of Lake Taihu, China. Aquat. Ecol., 44, 4154.
[37]Sorokina, V. and Kulygin, V., 2013. Long-term variability of the water transparency (Secchi Depth) in the Sea of Azov. Oceanology, 53, 287293.
[38]Statzner, B., 2012. Geomorphological implications of engineering bed sediments by lotic animals. Geomorphology, 157–158, 4965.
[39]Superville, P.-J., Prygiel, E., Magnier, A., Lesven, L., Gao, Y., Baeyens, W., Ouddane, B., Dumoulin, D. and Billon, G., 2014. Daily variations of Zn and Pb concentrations in the Deûle River in relation to the resuspension of heavily polluted sediments. Sci. Total Environ., 470, 600607.
[40]Tammeorg, O., Niemistö, J., Möls, T., Laugaste, R., Panksep, K. and Kangur, K., 2013. Wind-induced sediment resuspension as a potential factor sustaining eutrophication in large and shallow Lake Peipsi. Aquat. Sci., 75, 559570.
[41]Welsh, D., 2003. It's a dirty job but someone has to do it: the role of marine benthic macrofauna in organic matter turnover and nutrient recycling to the water column. Chem. Ecol., 19, 321342.
[42]Widdows, J. and Brinsley, M., 2002. Impact of biotic and abiotic processes on sediment dynamics and the consequences to the structure and functioning of the intertidal zone. J. Sea Res., 48, 143156.
[43]Widdows, J., Brinsley, M.D., Salkeld, P.D. and Lucas, C.H., 2000. Influence of biota on spatial and temporal variation in sediment erodability and material flux on a tidal flat (Westerschelde, The Netherlands). Mar. Ecol. Prog. Ser., 194, 2337.
[44]Widdows, J., Lucas, J.S., Brinsley, M.D., Salkeld, P.N. and Staff, F.J., 2002. Investigation of the effects of current velocity on mussel feeding and mussel bed stability using an annular flume. Helgoland Mar. Res., 56, 312.
[45]Widdows, J., Brinsley, M.D. and Pope, N.D., 2009. Effect of Nereis diversicolor density on the erodability of estuarine sediment. Mar. Ecol. Prog. Ser., 378, 135143.
[46]Yang, Z., Feng, J., Niu, J. and Shen, Z., 2008. Release of polycyclic aromatic hydrocarbons from Yangtze River sediment cores during periods of simulated resuspension. Environ. Pollut., 155, 366374.
[47]You, B., Wang, T., Fan, C., Zhu, L., Zhong, J., Li, B., Yin, H. and Hu, C., 2007a. Quantitative simulative method of sediment resuspension in Lake Taihu. J. Lake Sci., 19, 611617.
[48]You, B., Zhong, J., Fan, C., Wang, T., Zhang, L. and Ding, S., 2007b. Effects of hydrodynamics processes on phosphorus fluxes from sediment in large, shallow Taihu Lake. J. Environ. Sci., 19, 10551060.
[49]Zhang, L., 2010. Changes of Sediment-Water Interface Properties and Phosphorus Dynamics Under Bioturbation in Lake, Nanjing Institute of Geography and Limnology, CAS, Nanjing.
[50]Zhang, L., Gu, X., Fan, C., Shang, J., Shen, Q., Wang, Z. and Shen, J., 2010. Impact of different benthic animals on phosphorus dynamics across the sediment-water interface. J. Environ. Sci., 22, 16741682.
[51]Zimmerman, G.F. and de Szalay, F.A., 2007. Influence of unionid mussels (Mollusca: Unionidae) on sediment stability: an artificial stream study. Fund. Appl. Limnol., 168, 299306.

Keywords

The role of tubificid worms (Limnodrilus hoffmeisteri) in sediment resuspension: a microcosm study

  • Lei Zhang (a1), Jingge Shang (a2), Wei He (a3), Bensheng You (a1) and Chengxin Fan (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed