Skip to main content Accessibility help
×
Home

Role of the hyporheic heterotrophic biofilm on transformation and toxicity of pesticides

  • J.M. Sánchez-Pérez (a1) (a2), B. Montuelle (a3) (a4), F. Mouchet (a1) (a2), L. Gauthier (a1) (a2), F. Julien (a1) (a2), S. Sauvage (a1) (a2), S. Teissier (a1) (a2), K. Dedieu (a1) (a2), D. Destrieux (a1) (a2), P. Vervier (a1) (a2) and M. Gerino (a1) (a2)...

Abstract

The role of heterotrophic biofilm of water–sediment interface in detoxification processes was tested in abiotic and biotic conditions under laboratory conditions. Three toxicants, a herbicide (Diuron), a fungicide (Dimethomorph) and an insecticide (Chlorpyrifos-ethyl) have been tested in water percolating into columns reproducing hyporheic sediment. The detoxification processes were tested by comparing the water quality after 18 days of percolation with and without heterotrophic biofilm. Tested concentrations were 30 μg.L−1 of Diuron diluted in 0.1% dimethyl sulfoxide (DMSO), 2 μg.L−1 of Dimethomorph and 0.1 μg.L−1 of Chlorpyrifos-ethyl. To characterise the detoxification efficiency of the system, we performed  genotoxicity bioassays in amphibian larvae and rotifers and measured the respiration and denitrification of sediments. Although the presence of biofilm increased the production of N-(3,4 dichlorophenyl)-N-(methyl)-urea, a metabolite of diuron, the toxicity did not decrease irrespective of the bioassay. In the presence of biofilm, Dimethomorph concentrations decreased compared with abiotic conditions, from 2 μg.L−1 to 0.4 μg.L−1 after 18 days of percolation. For both Dimethomorph and Chlorpyrifos-ethyl additions, assessment of detoxification level by the biofilm depended on the test used: detoxification effect was found with amphibian larvae bioassay and no detoxification was observed with the rotifer test. Heterotrophic biofilm exerts a major influence in the biochemical transformation of contaminants such as pesticides, suggesting that the interface between running water and sediment plays a role in self-purification of stream reaches.

Copyright

Corresponding author

*Corresponding author: jose.sanchez@univ-tlse3.fr

References

Hide All
[1]AFNOR (Association française de normalisation; the French National Organization for quality regulations) 2000. Norme NFT 90- 325. Qualité de l'Eau. Evaluation de la genotoxicité au moyen de larves d'amphibien (Xenopus laevis, Pleurodeles waltl). ICS : 13.020.40 ; 13.060.70. Norme française homologuée, Septembre 2000, Paris: AFNOR. 17.
[2]Baker, M.A., Dahm, C.N. and Valett, H.M., 2000. Anoxia, anaerobic metabolism, and biogeochemistry of the stream-water–groundwater interface. In: Jones, J.B. and Mulholland, P.J. (eds.), Streams and Ground Waters, Academic Press, Boston, 259283.
[3]Battin, T.J., Kaplan, L.A., Newbold, J.D. and Hendricks, S.P., 2003. A mixing model analysis of stream solute dynamics and the contribution of a hyporheic zone to ecosystem function. Freshwater Biol., 48, 120.
[4]Baumgarten, B., Jährig, J., Reemtsma, T. and Jekel, M., 2011. Long term laboratory column experiments to simulate bank filtration: factors controlling removal of sulfamethoxazole. Water Res., 45, 211220.
[5]Bogaerts, P., Bohatier, J., Bonnemoy, F., Cuer, A., Sancelme, M., Tixier, C., Twagilimana, L. and Veschambre, H., 2000. Fungal biodegradation of a phenylurea herbicide, diuron: structure and toxicity of metabolites. Pest Manage. Sci., 56, 455462.
[6]Bonnemoy, F., Cuer, A., Sancelme, M., Tixier, C. and Veschambre, H., 2001. Degradation products of a phenylurea herbicide, diuron: synthesis, ecotoxicity and biotransformation. Environ. Toxicol. Chem., 30, 13811389.
[7]Boulton, A.J., Findlay, S., Marmonier, P., Stanley, E.H. and Valett, H.M., 1998. The functional significance of the hyporheic zone in streams and rivers. Annu. Rev. Ecol. Syst., 29, 5981.
[8]Brugger, A., Reitner, B., Kolar, I., Quéric, N. and Herndl, G.J., 2001. Seasonal and spatial distribution of dissolved and particulate organic carbon and bacteria in the bank of an impounding reservoir on the Enns River, Austria. Freshwater Biol., 46, 9971016.
[9]Brunke, M. and Gonser, T., 1997. The ecological significance of exchange processes between rivers and groundwater. Freshwater Biol., 37, 133.
[10]Devault, D., Gerino, M., Laplanche, C., Julien, F., Winterton, P., Merlina, G., Delmas, F., Lim, P., Sanchez Perez, J.M. and Pinelli, E., 2009. Herbicide accumulation and evolution in reservoir sediments. Sci. Total Environ., 407, 26592665.
[11]Everard, M. and Powell, A., 2002. Rivers as living systems. Aquatic Conserv. Mar. Freshw. Ecosyst., 12, 329337.
[12]Findlay, S., 1995. Importance of surface-subsurface exchange in stream ecosystems: the hyporheic zone. Limnol. Oceanogr., 40, 159164.
[13]Furutani, A., Rudd, J.W.N. and Kelly, C.A., 1984. A method for measuring the response of sediments microbial communities to environmental perturbations. Can. J. Microbiol., 30, 14081414.
[14]Gavrilescu, M., 2005. Fate of pesticide in the environment and its bioremediation. Eng. Life Sci., 5, 497526.
[15]Giesy, J.P., Solomon, K.R., Coats, J.R., Dixon, K.R., Giddings, J.M. and Kenaga, E.E., 1999. Chlorpyrifos: ecological risk assessment in North American aquatic environments. Rev. Environ. Contam. Toxicol., 160, 1129.
[16]Gifford, S., Hugh, D. and O'Connor, W., 2007. Aquatic zooremediation deploying animals to remediate contaminated aquatic environments. Trends Biotechnol., 25, 6065.
[17]Gordeliy, V.I., Keselev, M.A., Lesieur, P., Pole, A.V. and Teixera, J., 1998. Lipid membrane structure and interaction in DMSO/water mixtures. Biophys. J., 75, 23432351.
[18]Griebler, C. and Slezak, D., 2001. Microbial activity in aquatic environments measured by DMSO reduction and intercomparison with commonly used methods. Appl. Environ. Microbiol., 67, 100109.
[19]Grimm, N.B. and Fisher, S.G., 1984. Exchange between interstitial and surface water: implications for stream metabolism and nutrient cycling. Hydrobiologia, 111, 219228.
[20]Gruenheid, S., Amy, G. and Jekel, M., 2005. Removal of bulk dissolved organic carbon (DOC) and trace organic compounds by bank filtration and artificial recharge. Water Res., 39, 32193228.
[21]House, W.A., Leach, D.V. and Armitage, P.D., 2001. Study dissolved silicon and nitrate dynamics in a freshwater stream. Water Res., 35, 27492757.
[22]Hunter, K.S., Wang, Y. and Van Cappellen, P., 1998. Kinetic modelling of microbially- driven redox chemistry of subsurface environments: coupling transport, microbial metabolism and geochemistry. J. Contam. Hydrol., 209, 5380.
[23]Ifabiyi, I.P., 2008. Self purification of a freshwater stream in Ile-Ife : lessons for water management. J. Hum. Ecol., 24, 131137.
[24]ISO, 2006. International Standard. Water quality – Evaluation of genotoxicity by measurement of the induction of micronuclei – Part 1: Evaluation of genotoxicity using amphibian larvae. ISO 21427-1, ICS: 13.060.70, GENOVA – CH, Août 2006, 15.
[25]Janauer, G.A., 2000. Ecohydrology : fusing concepts and scales. Ecol. Eng., 16, 916.
[26]Jekel, M. and Gruenheid, S., 2005. Bank filtration and groundwater recharge for treatment of polluted surface waters. Water Sci. Technol.: Water Supply, 5, 5766.
[27]Landmeyer, J.E., Bradley, P.M., Trego, D.A., Hale, K.G. and Haas, J.E., 2010. MTBE, TBA, and TAME attenuation in diverse hyporheic zones. Ground Water, 48, 3041.
[28]Lefebvre, S., Marmonier, P. and Peiry, J.L., 2006. Nitrogen dynamics in rural streams: differences between geomorphologic units. Ann. Limnol. - Int. J. Lim., 42, 4352.
[29]Lewandowski, J., Putschew, A., Schweisg, D., Neumann, C. and Radke, M., 2011. Fate of organic micropollutants in the hyporheic zone of a eutrophic lowland stream: results of a preliminary field study. Sci. Total Environ., 409, 18241835.
[30]Marmonier, P., Archambaud, G., Belaidi, N., Bougon, N., Breil, P., Chauvet, E., Claret, C., Cornut, J., Datry, T., Dole-Olivier, M.-J., Dumont, B., Flipo, N., Foulquier, A., Gérino, M., Guilpart, A., Julien, F., Maazouzi, C., Martin, D., Mermillod-Blondin, F., Montuelle, B., Namour, Ph., Navel, S., Ombredane, D., Pelte, T., Piscart, C., Pusch, M., Stroffek, S., Robertson, A., Sánchez-Pérez, J.M., Sauvage, S., Taleb, A., Wantzen, M. and Vervier, Ph., 2012. The role of organisms in hyporheic processes: gaps in current knowledge, needs for future research and applications. Ann. Limnol. - Int. J. Lim., 48, 253266.
[31]McGill, R., Tuckey, J. and Larsen, W., 1978. Variations of box plots. Am. Statist., 32, 1216.
[32]Mermillod-Blondin, F., Gaudet, J.P., Gerino, M. and Creuze des, Châtelliers M., 2003. Influence of macroinvertebrates on physico-chemical and microbial processes in the hyporheic sediments. Hydrol. Process., 17, 779794.
[33]Mouchet, F. and Gauthier, L., 2013. Genotoxicity of contaminants: amphibian micronucleus assay. In: Férard, J.F. and Blaise, C. (eds.), Comprehensive Handbook (or Practical Guide) of Ecotoxicological Terms, Springer Publishers, Dordrecht, The Netherlands. in press.
[34]Navel, S., Sauvage, S., Delmotte, S., Gerino, M., Marmonier, P. and Mermillod-Blondin, F., 2012. A modelling approach to quantify the influence of fine sediment deposition on biogeochemical processes occurring in the hyporheic zone. Ann. Limnol. - Int. J. Lim., 48, 279287.
[35]Nieuwkoop, D. and Faber, J., 1956. Normal Table of Xenopus laevis (Daudin): A Systematical and Chronological Survey of the Development from the Fertilized Egg Till the End of Metamorphosis, North-Holland Publishing Company (Amsterdam), 243.
[36]Orghidan, T., 1959. Ein neuer Lebensraum des unterirdischen Wassers: Der hyporheische Biotop. Arch. Hydrobiol., 55, 392414.
[37]Peyrard, D., Sauvage, S., Vervier, P., Sánchez-Pérez, J.M. and Quintard, M., 2008. A coupled vertically integrated model to describe lateral exchanges between surface and subsurface in large alluvial floodplains with a fully penetrating river. Hydrol. Process., 22, 42574427.
[38]Peyrard, D., Delmotte, S., Sauvage, S., Namour, Ph., Gerino, M., Vervier, P. and Sánchez-Pérez, J.M., 2011. Longitudinal transformation of nitrogen and carbon transport and in the hyporheic zone of an N-reach stream: a combined modeling and field study. Phys. Chem. Earth, 36, 599611.
[39]Pusch, M. and Schwoerbel, J., 1994. Community respiration in hyporheic sediments of a mountain stream (Steina, Black Forest). Arch. Hydrobiol., 130, 3552.
[40]Pusch, M., Fiebig, D., Brettar, I., Eisenmann, H., Ellis, B.K., Kaplan, L.A., Lock, M.A., Naegeli, M.W. and Traunspurger, W., 1998. The role of micro-organisms in the ecological connectivity of running waters. Freshw. Biol., 40, 453495.
[41]Sánchez, Pérez J.M., Vervier, P., Garabetian, F., Sauvage, S., Loubet, M., Rols, J.L., Bariac, T. and Weng, P., 2003. Nitrogen dynamics in the shallow groundwater of a riparian wetland zone of the Garonne, south-western France. Nitrate inputs, bacterial densities, organic matter supply and denitrification measurements. Hydrol. Earth Syst. Sci., 7, 97107.
[42]Schindler, J.E. and Krabbenhoft, D.P., 1998. The hyporheic zone as a source of dissolved organic carbon and carbon gazes to a temperate forest stream. Biogeochemistry, 43, 157174.
[43]Schmidt, C.K., Lange, F.T. and Brauch, H.J., 2004. Assessing the impact of different redox conditions and residence times on the fate of organic micropollutants during riverbank filtration. In: 4th International Conference on Pharmaceuticals and Endocrine Disrupting Chemicals in Water, 13–15 October 2004, Minneapolis, Minnesota.
[44]Schuytema, G.S. and Nebeker, A.V., 1998. Comparative toxicity of diuron on survival and growth of Pacific treefrog, bullfrog, red-legged frog, and African clawed frog embryos and tadpoles. Arch. Environ. Contam. Toxicol., 34, 370376.
[45]Stanford, J.A. and Ward, J.V., 1993. An ecosystem perspective of alluvial rivers: connectivity and the hyporheic. J. N. Am. Benthol. Soc., 12, 4860.
[46]Storey, R.G., Fulthorpe, R.R. and Williams, D.D., 1999. Perspectives and predictions on the microbial ecology of the hyporheic zone. Freshw. Biol., 41, 119130.
[47]Sumpono, Perotti, P., Belan, A., Forestier, C., Lavedrine, B. and Bohatier, J., 2003. Effect of diuron on aquatic bacteria in laboratory-scale wastewater treatment ponds with special reference to Aeromonas species studied by colony hybridization. Chemosphere, 50, 445455.
[48]Weng, P., Sánchez Pérez, J.M., Sauvage, S., Vervier, P. and Giraud, F., 2003. Assessment of the quantitative and qualitative buffer function of an alluvial wetland: hydrological modelling of a large floodplain (Garonne River, France). Hydrol. Process., 17, 23752392.
[49]White, D.S., 1993. Perspectives on defining and delineating hyporheic zones. J. N. Am. Benthol. Soc., 12, 6169.
[50]Williams, J.B., Mills, G. and Barnhurst, D., 2007. Transport and degradation of a trichloroethylene plume within a stream hyporheic zone. In: Proceedings of the 2007 National Conference on Environmental Science and Technology, 189194.
[51]Wyss, A., Boucher, J., Montero, A. and Marison, I., 2006. Micro-encapsulated organic phase for enhanced bioremediation of hydrophobic organic pollutants. Enzyme Microbiol. Technol., 40, 2531.

Keywords

Related content

Powered by UNSILO

Role of the hyporheic heterotrophic biofilm on transformation and toxicity of pesticides

  • J.M. Sánchez-Pérez (a1) (a2), B. Montuelle (a3) (a4), F. Mouchet (a1) (a2), L. Gauthier (a1) (a2), F. Julien (a1) (a2), S. Sauvage (a1) (a2), S. Teissier (a1) (a2), K. Dedieu (a1) (a2), D. Destrieux (a1) (a2), P. Vervier (a1) (a2) and M. Gerino (a1) (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.