Skip to main content Accessibility help

The role of organisms in hyporheic processes: gaps in current knowledge, needs for future research and applications

  • P. Marmonier (a1), G. Archambaud (a2), N. Belaidi (a3), N. Bougon (a4), P. Breil (a5), E. Chauvet (a6) (a7), C. Claret (a8), J. Cornut (a6) (a7), T. Datry (a4), M.-J. Dole-Olivier (a1), B. Dumont (a2), N. Flipo (a9), A. Foulquier (a1) (a4), M. Gérino (a6) (a7), A. Guilpart (a10), F. Julien (a6) (a7), C. Maazouzi (a1), D. Martin (a1), F. Mermillod-Blondin (a1), B. Montuelle (a4) (a11), Ph. Namour (a4) (a12), S. Navel (a1), D. Ombredane (a10), T. Pelte (a13), C. Piscart (a1), M. Pusch (a14), S. Stroffek (a13), A. Robertson (a15), J.-M. Sanchez-Pérez (a6) (a7), S. Sauvage (a6) (a7), A. Taleb (a3), M. Wantzen (a16) and Ph. Vervier (a6) (a7) (a17)...


Fifty years after the hyporheic zone was first defined (Orghidan, 1959), there are still gaps in the knowledge regarding the role of biodiversity in hyporheic processes. First, some methodological questions remained unanswered regarding the interactions between biodiversity and physical processes, both for the study of habitat characteristics and interactions at different scales. Furthermore, many questions remain to be addressed to help inform our understanding of invertebrate community dynamics, especially regarding the trophic niches of organisms, the functional groups present within sediment, and their temporal changes. Understanding microbial community dynamics would require investigations about their relationship with the physical characteristics of the sediment, their diversity, their relationship with metabolic pathways, their interactions with invertebrates, and their response to environmental stress. Another fundamental research question is that of the importance of the hyporheic zone in the global metabolism of the river, which must be explored in relation to organic matter recycling, the effects of disturbances, and the degradation of contaminants. Finally, the application of this knowledge requires the development of methods for the estimation of hydrological exchanges, especially for the management of sediment clogging, the optimization of self-purification, and the integration of climate change in environmental policies. The development of descriptors of hyporheic zone health and of new metrology is also crucial to include specific targets in water policies for the long-term management of the system and a clear evaluation of restoration strategies.

    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The role of organisms in hyporheic processes: gaps in current knowledge, needs for future research and applications
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The role of organisms in hyporheic processes: gaps in current knowledge, needs for future research and applications
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The role of organisms in hyporheic processes: gaps in current knowledge, needs for future research and applications
      Available formats


Corresponding author

*Corresponding author:


Hide All
[1]Aller, R.C., 1982. The effects of macrobenthos on chemical properties of marine sediment and overlying water. In: McCall, P.L. and Tevesz, M.J.S. (eds.), Animal Sediment Relations. The Biogenic Alteration of Sediments, Plenum Publishing Corporation, New York, 53102.
[2]Aller, R.C., 1994. Bioturbation and remineralization of sedimentary organic matter: effects of redox oscillation. Chem. Geol., 114, 331345.
[3]Atalah, J., Otto, S.A., Anderson, M.J., Costello, M.J., Lenz, M. and Wahl, M., 2007. Temporal variance of disturbance did not affect diversity and structure of a marine fouling community in north-eastern. New Zealand. Mar. Biol., 153, 199211.
[4]Baker, M.A., Dahm, C.N. and Valett, H.M., 1999. Acetate retention and metabolism in the hyporheic zone of a mountain stream. Limnol. Oceanogr., 44, 15301539.
[5]Bärlocher, F., Seena, S., Wilson, K.P. and Williams, D.D., 2008. Raised water temperature lowers diversity of hyporheic aquatic hyphomycetes. Freshwater Biol., 53, 368379.
[6]Battin, T.J., 2000. Hydrodynamics is a major determinant of streambed biofilm activity: From the sediment to the reach scale. Limnol. Oceanogr., 45, 13081319.
[7]Battin, T.J., Wille, A., Sattler, B. and Psenner, R., 2001. Phylogenetic and functional heterogeneity of sediment biofilms along environmental gradients in a glacial stream. Appl. Environ. Microbiol., 67, 799807.
[8]Bencala, K.E., 1993. A perspective on stream-catchment connections. J. N. Am. Benthol. Soc., 12, 4447.
[9]Bencala, K.E., 2000. Hyporheic zone hydrological processes. Hydrol. Process., 14, 27972798.
[10]Birgand, F., Skaggs, R.W., Chescheir, G.M. and Gilliam, J.W., 2007. Nitrogen removal in streams of agricultural catchments – a literature review. Crit. Rev. Environ. Sci. Technol., 37, 381487.
[11]Bouletreau, S., Garabetian, F., Sauvage, S. and Sánchez-Pérez, J.M., 2006. Assessing the importance of self-generated detachment process in river biofilm models. Freshwater Biol., 51, 901912.
[12]Boulton, A.J., 2000. The functional role of the hyporheos. Verh. Int. Ver. Theor. Angew. Limnol., 27, 5163.
[13]Boulton, A.J., 2005. Chances and challenges in the conservation of groundwater-dependent ecosystems. Aquat. Conserv.: Mar. Freshwater Ecosyst., 15, 319323.
[14]Boulton, A.J., Scarsbrook, M.R., Quinn, J.M. and Burrell, G.P., 1997. Land-use effects on the hyporheic ecology of five small streams near Hamilton, New Zealand. N. Z. J. Mar. Freshwater Res., 31, 609622.
[15]Boulton, A.J., Findlay, S., Marmonier, P., Stanley, E.H. and Valett, H.M., 1998. The functional significance of the hyporheic zone in streams and rivers. Annu. Rev. Ecol. Syst., 29, 5981.
[16]Boulton, A.J., Fenwick, G.D., Hancock, P.J. and Harvey, M.S., 2008. Biodiversity, functional roles and ecosystem services of groundwater invertebrates. Invertebr. Syst., 22, 103116.
[17]Boulton, A.J., Datry, T., Kasahara, T., Mutz, M. and Stanford, J.A., 2010. Ecology and management of the hyporheic zone: stream–groundwater interactions of running waters and their floodplains. J. N. Am. Benthol. Soc., 29, 2640.
[18]Bretschko, G. and Leichtfried, M., 1987. The determination of organic matter in river sediments. Arch. Hydrobiol. Suppl., 68, 403417.
[19]Bretschko, G. and Leichtfried, M., 1988. Distribution of organic matter and fauna in a second order alpine gravel stream (RITRODAT-Lunz).  Verh. Int. Verein. Limnol., 23, 13331339.
[20]Bridge, J., 2005. High resolution in-situ monitoring of hyporheic zone biogeochemistry, Science Report SC030155/SR3, Environment Agency, Bristol, 51 p.
[21]Brunke, M. and Gonser, T., 1999. Hyporheic invertebrates – the clinal nature of interstitial communities structured by hydrological exchange and environmental gradients. J. N. Am. Benthol. Soc., 18, 344362.
[22]Buffington, J.M. and Tonina, D., 2009. Hyporheic exchange in mountain rivers II: effects of channel morphology on mechanics, scales, and rates of exchange. Geogr. Compass, 3, 10381062.
[23]Burns, A. and Ryder, D.S., 2001. Potential for biofilms as biological indicators in Australian riverine systems. Ecol. Manage. Rest., 2, 5363.
[24]Burt, T., Pinay, G. and Sabater, S., 2010. What do we still need to know about the ecohydrology of riparian zones? Ecohydrology, 3, 373377.
[25]Cardenas, M.B., Wilson, J.L. and Zlotnik, V.A., 2004. Impact of heterogeneity, bed forms, and stream curvature on subchannel hyporheic exchange. Water Resour. Res., 40, W08307.
[26]Carpenter, S.R., Fisher, S.G., Grimm, N.B. and Kitchell, J.F., 1992. Global change and freshwater ecosystems. Annu. Rev. Ecol. Syst., 23, 119139.
[27]Chamberlain, P.M., Bull, I.D., Black, H.I.J., Ineson, P. and Evershed, R.P., 2006. Collembolan trophic preferences determined using fatty acid distributions and compound-specific stable carbon isotope values. Soil Biol. Biochem., 38, 12751281.
[28]Claret, C., Marmonier, P., Boissier, J.M., Fontvieille, D. and Blanc, P., 1997. Nutrient transfer between parafluvial interstitial water and river water: influence of gravel bar heterogeneity. Freshwater Biol., 37, 657670.
[29]Claret, C., Marmonier, P. and Bravard, J.P., 1998. Seasonal dynamics of nutrient and biofilm in interstitial habitats of two contrasting riffles in a regulated large river. Aquat. Sci., 60, 3355.
[30]Claret, C., Boulton, A.J., Dole-Olivier, M.J. and Marmonier, P., 2001. Functional processes versus state variables: interstitial organic matter pathways in floodplain habitats. Can. J. Fish. Aquat. Sci., 58, 15941602.
[31]Clement, J.C., Pinay, G. and Marmonier, P., 2002. Seasonal dynamics of denitrification along topohydrosequences in three different riparian wetlands. J. Environ. Qual., 31, 10251037.
[32]Clement, J.C., Shrestha, J., Ehrenfeld, J.G. and Jaffe, P.R., 2005. Ammonium oxidation coupled to dissimilatory reduction of iron under anaerobic conditions in wetland soils. Soil Biol. Biochem., 37, 23232328.
[33]Cooling, M.P. and Boulton, A.J., 1993. Aspects of the hyporheic zone below the terminus of a South Australian arid-zone stream. Aust. J. Mar. Freshwater Res., 44, 411426.
[34]Cornut, J., Elger, A., Lambrigot, D., Marmonier, P. and Chauvet, E., 2010. Early stages of leaf decomposition are mediated by aquatic fungi in the hyporheic zone of woodland streams. Freshwater Biol., 55, 25412556.
[35]Corti, R., Datry, T., Drummond, L. and Learned, S., 2011. Natural variation in immersion and emersion affects breakdown and invertebrate colonization of leaf litter in temporary river. Aquat. Sci., 73, 537550.
[36]Crenshaw, C.L., Valett, H.M. and Tank, J.L., 2002. Effects of coarse particulate organic matter on fungal biomass and invertebrate density in the subsurface of a head- water stream. J. N. Am. Benthol. Soc., 21, 2842.
[37]Creuzé des Châtelliers, M. and Reygrobellet, J.L., 1990. Interactions between geomorphological processes, benthic and hyporheic communities: first results on a by-passed canal of the French upper Rhône river. Regul. Riv., 5, 139158.
[38]Dahm, C.N. and Valett, H.M., 1996. Hyporheic zones. In: Methods in Stream Ecology, A. H. F. R. a. L. G., Academic Press, San Diego, California, 5374.
[39]Dahm, C.N., Trotter, E.H. and Sedell, J.R., 1987. Role of anaerobic zones and processes in stream ecosystem productivity. In: Averett, R.C. and McKnight, D.M. (eds.), Chemical Quality of Water and the Hydrologic Cycle, Lewis Publishers, Chelsea, 157178.
[40]Dahm, C.N., Grimm, N.B., Marmonier, P., Valett, H.M. and Vervier, P., 1998. Nutrient Dynamics at the interface between surface waters and ground waters. Freshwater Biol., 40, 427451.
[41]Danielopol, D.L., 1989. Groundwater fauna associated to riverine aquifers. J. N. Am. Benthol. Soc., 8, 1835.
[42]Danielopol, D.L., 2000. Biodiversity in groundwater: a large-scale view. Trends Ecol. Evol., 15, 223224.
[43]Datry, T. and Larned, S.T., 2008. River flow controls ecological processes and invertebrate assemblages in subsurface flowpaths of an ephemeral river reach. Can. J. Fish. Aquat. Sci., 65, 15321544.
[44]Datry, T., Corti, R., Claret, C. and Philippe, M., 2011. Flow intermittence controls leaf litter breakdown in a French temporary alluvial river: the “drying memory”. Aquat. Sci., 73, 471483.
[45]Datry, T., Malard, F., Niedereitter, R. and Gibert, J., 2003. Video logging for examining biogenic structures in deep heterogeneous subsurface sediments. C. R. Acad. Sci. Biol., 326, 589597.
[46]Datry, T., Larned, S.T. and Scarsbrook, M.R., 2007. Responses of hyporheic invertebrate assemblages to large-scale variation in flow permanence and surface-subsurface exchange. Freshwater Biol., 52, 14521462.
[47]Descloux, S., Datry, T., Philippe, M. and Marmonier, P., 2010. Comparison of different techniques to assess surface and subsurface streambed colmation with fine sediments. Int. Rev. Hydrobiol, 95, 520540.
[48]Doering, M., Uehlinger, U., Rotach, A., Schläpfer, D. and Tockner, K., 2006. Large-scale expansion and contraction dynamics along an unconstrained alpine alluvial corridor (Tagliamento River, Northeast Italy). Earth Surf. Process. Landforms, 32, 16931704.
[49]Dole-Olivier, M.J., Marmonier, P. and Beffy, J.L., 1997. Response of invertebrates to lotic disturbance: is the hyporheic zone a patchy refugium? Freshwat. Biol., 37, 257276.
[50]Dukes, J.S. and Mooney, H.A., 1999. Does global change increase the success of biological invaders? Trends Ecol. Evol., 14, 135139.
[51]Engstrom, P., Penton, C.R. and Devol, A.H., 2009. Anaerobic ammonium oxidation in deep-sea sediments off the Washington margin. Limnol. Oceanogr., 54, 16431652.
[52]European Community, 2000. Directive 2000/60/EC of the European Parliament and of the Council establishing a framework for the Community action in the field of water policy.
[53]Fauvet, G., Claret, C. and Marmonier, P., 2001. Influence of benthic and interstitial processes on nutrient changes along a regulated reach of a large river (Rhône River, France). Hydrobiologia, 445, 121131.
[54]Fellows, C.S., Valett, H.M. and Dahm, C.N., 2001. Whole-stream metabolism in two montane streams: Contribution of the hyporheic zone. Limnol. Oceanogr., 46, 523531.
[55]Feris, K.P., Ramsey, P.W., Frazar, C., Rillig, M.C., Gannon, J.E. and Holben, W.E., 2003. Structure and seasonal dynamics of hyporheic zone microbial communities in free-stone Rivers of the western United States. Microb. Ecol., 46, 200215.
[56]Feris, K.P., Ramsey, P.W., Frazar, C., Rillig, M.C., Moore, J.N., Gannon, J.E. and Holben, W.E., 2004. Seasonal dynamics of shallow-hyporheic-zone microbial community structure along a heavy-metal contamination gradient. Appl. Environ. Microbiol., 70, 23232331.
[57]Findlay, S. and Sobczak, W.V., 1996. Variability in removal of dissolved organic carbon in hyporheic sediments. J. N. Am. Benthol. Soc., 15, 3541.
[58]Findlay, S., Strayer, D., Goumbala, C. and Gould, K., 1993. Metabolism of streamwater dissolved organic carbon in the shallow hyporheic zone. Limnol. Oceanogr., 38, 14931499.
[59]Fisher, S.G., Grimm, N.B., Marti, E., Holmes, R.M. and Jones, J.B., 1998. Material spiraling in stream corridors: a telescoping ecosystem model. Ecosystems, 1, 1934.
[60]Fischer, H., Sukhodolov, A., Wilczek, S. and Engelhardt, C., 2003. Effects of flow dynamics and sediment movement on microbial activity in a lowland river. River Res. Appl., 19, 473482.
[61]Fischer, H., Kloep, F., Wilzcek, S. and Pusch, M.T., 2005. A river's liver – microbial processes within the hyporheic zone of a large lowland river. Biogeochemistry, 76, 349371.
[62]Fowler, R.T. and Scarsbrook, M.R., 2002. Influence of hydrologic exchange patterns on water chemistry and hyporheic invertebrate communities in three gravel-bed rivers. N. Z. J. Mar. Freshwater Res., 36, 471482.
[63]Gaudes, A., Artigas, J. and Munoz, I., 2010. Species traits and resilience of floods and drought in a Mediterranean stream. Mar. Freshwater Res., 61, 13361347.
[64]Gerino, M., Frignani, M., Mugnai, C., Bellucci, L.G., Prevedelli, D., Valentini, A., Castelli, A., Delmotte, S. and Sauvage, S., 2007. Bioturbation in the Venice lagoon: rates and relationship to organisms. Acta Oecol., 32, 1425.
[65]Gessner, M.O., Chauvet, E. and Dobson, M., 1999. A perspective on leaf litter breakdown in streams. Oikos, 85, 377384.
[66]Gibert, J., Ginet, R., Mathieu, J. and Reygrobellet, J.L., 1981. Structure et fonctionnement des écosystèmes du Haut-Rhône français. IX – Analyse des peuplements de deux stations phréatiques alimentant des bras morts. Int. J. Speleol., 11, 141158.
[67]Gibert, J., Dole-Olivier, M.J., Marmonier, P. and Vervier, P. 1990. Surface water-Groundwater ecotones. In: Naiman, R.J. and Décamps, H. (eds.), Ecology and Management of Aquatic-Terrestrial Ecotones, Partenon Publications, London, 199225.
[68]Gilbert, F., Bonin, P. and Stora, G., 1995. Effect of bioturbation on denitrification in a marine sediment from the West Mediterranean littoral. Hydrobiologia, 304, 4958.
[69]Gilbert, F., Stora, G. and Bonin, P., 1998. Influence of bioturbation on denitrification activity in Mediterranean coastal sediments: an in situ experimental approach. Mar. Ecol. Prog. Ser., 163, 99107.
[70]Gilbert, F., Hulth, S. and Aller, R.C., 2003. The influence of macrofaunal burrow spacing and diffusive scaling on sedimentary nitrification and denitrification: an experimental and model approach. J. Mar. Res., 61, 101125.
[71]Gooseff, M.N., Anderson, J.K., Wondzell, S.M., LaNier, J. and Haggerty, R., 2006. A modelling study of hyporheic exchange pattern and the sequence size, and spacing of stream bedforms in mountain stream networks, Oregon, USA. Hydrol. Proc., 20, 24432457.
[72]Graça, M.A., 2001. The Role of Invertebrates on Leaf Litter Decomposition in Streams – a Review. Int. Rev. Hydrobiol., 86, 383393.
[73]Greenwood, R., Mills, G.A. and Roig, B., 2007. Introduction to emerging tools and their use in water monitoring. Trends Anal. Chem., 26, 263267.
[74]Griebler, C. and Lueders, T., 2009. Towards a conceptual understanding of microbial biodiversity in groundwater ecosystems. Freshwater Biol., 54, 649677.
[75]Grimm, N.B. and Fisher, S.G., 1984. Exchange between interstitial and surface water: implications for stream metabolism and nutrient cycling. Hydrobiologia, 111, 219228.
[76]Gurevitch, J. and Padilla, D.K., 2004. Are invasions a major cause of extinctions?  Trends Ecol. Evol., 19, 470474.
[77]Hakenkamp, C. and Morin, A., 2000. The importance of meiofauna to lotic ecosystem functioning.  Freshwater Biol., 44, 165175.
[78]Hancock, P.J., Boulton, A.J. and Humphreys, W.F., 2005. Aquifers and hyporheic zones: Towards an ecological understanding of groundwater. Hydrogeol. J., 13, 98111.
[79]Harvey, B.N., Johnson, M.L., Kiernan, J.D. and Green, P.G., 2011. Net dissolved inorganic nitrogen production in hyporheic mesocosms with contrasting sediment size distributions. Hydrobiologia, 658, 343352.
[80]Heffernan, J.B., Sponseller, R.A. and Fisher, S.G., 2008. Consequences of a biogeomorphic regime shift for the hyporheic zone of a Sonoran Desert stream. Freshwater Biol., 53, 19541968.
[81]Hendricks, S.P., 1993. Microbial ecology of the hyporheic zone: a perspective integrating hydrology and biology. J. N. Am. Benthol. Soc., 12, 7078.
[82]Hendricks, S.P. and White, D.S., 1991. Physicochemical patterns within a hyporheic zone of a Northen Michigan River, with comments on surface water patterns. Can. J. Fish. Aquat. Sci., 48, 16451654.
[83]Hester, E.T. and Doyle, M.W., 2008. In-stream geomorphic structures as drivers of hyporheic exchange. Water Resour. Res., 44, W03417.
[84]Hinkle, S.R., Duff, J.H., Triska, F.J., Laenen, A., Gates, E.B., Bencala, K.E., Wentz, D.A. and Silva, S.R., 2001. Linking hyporheic flow and nitrogen cycling near the Willametter River – a large river in Oregon, USA. J. Hydrol., 244, 157180.
[85]Iribar, A., Sánchez-Pérez, J.M., Lyautey, E. and Garabétian, F., 2008. Differentiated free-living and sediment-attached bacterial community structure inside and outside denitrification hotspots in the river-groundwater interface. Hydrobiologia, 598, 109121.
[86]Jetten, M.S.M., Strous, M., Van der Pas-Schoonen, K.T., Schalk, J., Van Dongen, U.G.J.M., Van der Graaf, A.A., Logemann, S., Muyzer, G., Van Loosdrecht, M.C.M. and Kuenen, J.G., 1998. The anaerobic oxidation of ammonium. FEMS Microbiol. Rev., 22, S.421437.
[87]Jones, J.B. and Holmes, R.M., 1996. Surface-subsurface interactions in stream ecosystems. Trends Ecol. Evol., 11, 239242.
[88]Kasahara, T., Datry, T., Mutz, M. and Boulton, A., 2009. Restoration of stream-groundwater linkages in streams and rivers. Mar. Freshwater Res., 60, 976981.
[89]Kirchner, J.W., Feng, X.H., Neal, C. and Robson, A.J., 2004. The fine structure of water-quality dynamics: the (high-frequency) wave of the future. Hydrol. Process., 18, 13531359.
[90]Kjellin, J., Hallin, S. and Worman, A., 2007. Spatial variations in denitrification activity in wetland sediments explained by hydrology and denitrifying community structure. Water Res., 41, 47104720.
[91]Krause, S., Hannah, D.M., Fleckenstein, J.H., Heppell, C.M., Picku, R., Pinay, G., Robertson, A.L. and Wood, P.J., 2011. Inter-disciplinary perspectives on processes in the hyporheic zone. Ecohydrology, 4, 481499.
[92]Kristensen, E., Jensen, M.H. and Andersen, T.K., 1985. The impact of polychaete (Nereis virens Sars) burrows on nitrification and nitrate reduction in estuarine sediments. J. Exp. Mar. Biol. Ecol., 85, 7591.
[93]Labat, F., Piscart, C., Fontan, B., 2011. First records, pathways and distributions of four new Ponto-Caspian amphipods in France. Limnologica, 41, 290295.
[94]Lafont, M., Vivier, A., Nogueira, S., Namour, P. and Breil, P., 2006. Surface and hyporheic oligochaete assemblages in a French suburban stream. Hydrobiologia, 564, 183193.
[95]Landmeyer, J.E., Bradley, P.M., Trego, D.A., Hale, K.G. and Haas, J.E., 2010. MTBE, TBA, and TAME Attenuation in Diverse Hyporheic Zones. Ground Water, 48, 3041.
[96]Larned, S.T., Hicks, M.D., Schmidt, J., Davey, A.J.H., Dey, K., Scarsbrook, M., Arscott, D.B. and Woods, R.A., 2008. The Selwyn River of New Zealand: a benchmark system for alluvial plain rivers. River Res. Appl., 24, 121.
[97]Lecerf, A. and Richardson, J.S., 2010. Biodiversity-ecosystem function research: Insights gained from streams. River Res. Appl., 26, 4554.
[98]Leduc, D., 2009. Description of Oncholaimus moanae sp. nov. (Nematoda: Oncholaimidae), with notes on feeding ecology based on isotopic and fatty acid composition. J. Mar. Biol. Assoc. UK, 89, 337344.
[99]Lefebvre, S., Marmonier, P. and Pinay, G., 2004. Stream regulation and Nitrogen dynamics in sediment interstices: comparison of natural and straightened sectors of a third-order stream. River Res. Appl., 20, 499512.
[100]Lefebvre, S., Marmonier, P. and Peiry, J.L., 2006. Nitrogen dynamics in rural streams: differences between geomorphologic units. Int. J. Limnol., 42, 4352.
[101]Lefebvre, S., Clement, J.C., Pinay, G., Thenail, C., Durand, P. and Marmonier, P., 2007. 15N-Nitrate signature in streams: effects of land-cover and agriculture practices. Ecol. Appl., 17, 23332346.
[102]Lefebvre, S., Marmonier, P., Pinay, G., Bour, O., Aquilina, L. and Baudry, J., 2005. Nutrient dynamics in interstitial habitats of low-order rural streams with different bedrock geology. Arch. Hydrobiol., 164, 169191.
[103]Lewis, D.B., Grimm, N.B., Harms, T.K. and Schade, J.D., 2007. Subsystems, flowpaths, and the spatial variability of nitrogen in fluvial ecosystem. Landscape Ecol., 22, 911924.
[104]Lopez-Garcia, P., Gaill, F. and Moreira, D., 2002. Wide bacterial diversity associated with tubes of the vent worm Riftia pachyptila. Environ. Microbiol., 4, 204215.
[105]Lowell, J.L., Gordon, N., Engstrom, D., Stanford, J.A., Holben, W.E. and Gannon, J.E., 2009. Habitat heterogeneity and associated microbial community structure in a small-scale floodplain hyporheic flow path. Microb. Ecol., 58, 611620.
[106]Maazouzi, C., Piscart, C., Pihan, J.C. and Masson, G., 2009. Effect of habitat-related resources on fatty acid composition and body weight of the invasive Dikerogammarus villosus in an artificial reservoir. Fundam. Appl. Limnol., 175, 327338.
[107]Malard, F., Gallassi, D., Lafont, M., Dolédec, S. and Ward, J.V., 2003. Longitudinal patterns of invertebrates in the hyporheic zone of a glacial river. Freshwater Biol., 48, 17091725.
[108]Malard, F., Uehlinger, U., Zah, R. and Tockner, K., 2006. Flood-pulse and riverscape dynamics in a braided glacial river. Ecology, 87, 704716.
[109]Malcolm, I.A., Soulsby, C. and Youngson, A.F., 2006. High frequency logging technologies reveal state dependant hyporheic process dynamics: implications for hydroecological studies. Hydrol. Process., 20, 615622.
[110]Marmonier, P., Delettre, Y., Lefebvre, S., Guyon, J. and Boulton, A.J., 2004. A simple technique using wooden stakes to estimate vertical patterns of interstitial oxygenation in the beds of rivers. Arch. Hydrobiol., 160, 133143.
[111]Marmonier, P., Piscart, C., Sarriquet, P.E., Azam, D. and Chauvet, E., 2010. Relevance of large litter bag burial for the study of leaf breakdown in the hyporheic zone. Hydrobiologia, 641, 203214.
[112]Massa, F., Baglinière, J.L., Prunet, P. and Grimaldi, C., 2000. Survie embryo-larvaire de la truite (Salmo trutta) et conditions chimiques dans la frayère. Cybium, 24 (Suppl.), 129140.
[113]Matthaei, C.D., Weller, F., Kelly, D.W. and Townsend, C.R., 2006. Impacts of fine sediment addition to tussock, pasture, dairy and deer farming streams in New Zealand. Freshwater Biol., 51, 21542172.
[114]McDermott, M.J., Robertson, A.L., Shaw, P.J. and Milner, A.M., 2010. The hyporheic assemblage of a recently formed stream following deglaciation in Glacier Bay, Alaska. Can. J. Fish. Aquat. Sci., 67, 304313.
[115]Mermillod-Blondin, F., Creuzé des Châtelliers, M., Gerino, M. and Gaudet, J.P., 2000. Testing the effect of Limnodrilus sp. (Oligochaeta, Tubificidae) on organic matter and nutrient processing in the hyporheic zone: a microcosm method. Arch. Hydrobiol., 149, 467487.
[116]Mermillod-Blondin, F., Gaudet, J.P., Gerino, M. and Creuzé des Châtelliers, M., 2003. Influence of macroinvertebrates on physico-chemical and microbial processes in the hyporheic sediments. Hydrol. Process., 17, 779794.
[117]Mermillod-Blondin, F., Nogaro, G., Datry, T., Malard, F. and Gibert, J., 2005. Do tubificid worms influence the fate of organic matter and pollutants in stormwater sediments? Environ. Pollut., 134, 5769.
[118]Mermillod-Blondin, F., Nogaro, G., Vallier, F. and Gibert, J., 2008. Laboratory study highlights the key influences of stormwater sediment thickness and bioturbation by tubificid worms on dynamics of nutrients and pollutants in stormwater retention systems. Chemosphere, 72, 213223.
[119]Meyer, J.L., Sale, M.J., Mulholland, P.J. and LeRoy Poff, N., 1999. Impacts of climate change on aquatic ecosystem functioning and health. J. Am. Water Res. Assoc., 35, 13731386.
[120]Monard, C., Vandenkoornhuyse, P., Le Bot, B., Binet, F., 2011. Relationship between bacterial diversity and function under biotic control: the soil pesticide degraders as a case study. ISME J., 5, 10481056.
[121]Morrice, J.A., Valett, H.M., Dahm, C.N. and Campana, M.E., 1997. Alluvial characteristics, groundwater–surface water exchange and hydrologic retention in headwater streams. Hydrol. Process., 11, 253267.
[122]Mulholland, P.J., Marzolf, E.R., Webster, J.R., Hart, D.R. and Hendricks, S.P., 1997. Evidence of hyporheic retention of phosphorus in Walker Branch. Limnol. Oceanogr., 42, 443451.
[123]Nalepa, T.F., Fanslow, D.L. and Lang, G.A., 2009. Transformation of the offshore benthic community in Lake Michigan: recent shift from the native amphipod Diporeia spp. to the invasive mussel Dreissena rostriformis bugenis. Freshwater Biol., 54, 466479.
[124]Navel, S., Mermillod-Blondin, F., Montuelle, B., Chauvet, E., Simon, L., Piscart, C. and Marmonier, P., 2010. Interactions between fauna and sediment characteristics control plant matter breakdown in river sediments. Freshwater Biol., 55, 753766.
[125]Navel, S., Simon, L., Lecuyer, C., Fourel, F. and Mermillod-Blondin, F., 2011. The shredding activity of gammarids facilitates the processing of organic matter by the subterranean amphipod Niphargus rhenorhodanensis. Freshwater Biol., 56, 48149.
[126]Navel, S., Mermillod-Blondin, F., Montuelle, B., Chauvet, E., Simon, L. and Marmonier, P., 2011. Water-sediment exchanges control microbial processes associated with leaf litter degradation in the hyporheic zone: a microcosm study., 61, 96879.
[127]Nicholls, J.C. and Trimmer, M., 2009. Widespread occurrence of the anammox reaction in estuarine sediments. Aquat. Microbiol. Ecol., 55, 105113.
[128]Nikolcheva, L.G., Cockshutt, A.M. and Barlocher, F., 2003. Determining diversity of freshwater fungi on decaying leaves: Comparison of traditional and molecular approaches. Appl. Environ. Microbiol., 69, 25482554.
[129]Nogaro, G. and Mermillod-Blondin, F., 2009. Stormwater sediment and bioturbation influences on hydraulic functioning, biogeochemical processes, and pollutant dynamics in laboratory infiltration systems. Environ. Sci. Technol., 43, 36323638.
[130]Nogaro, G., Mermillod-Blondin, F., François-Carcaillet, F., Gaudet, J.P., Lafont, M. and Gibert, J., 2006. Invertebrate bioturbation can reduce the clogging of sediment: an experimental study using filtration sediment columns. Freshwater Biol., 51, 14581473.
[131]Nogaro, G., Mermillod-Blondin, F., Montuelle, B., Boisson, J.C., Lafont, M., Volat, B. and Gibert, J., 2007. Do tubificid worms influence organic matter processing and fate of pollutants in stormwater sediments deposited at the surface of infiltration systems? Chemosphere, 70, 315328.
[132]Nogaro, G., Mermillod-Blondin, F., Valett, H.M., François-Carcaillet, F., Gaudet, J.P., Lafont, M. and Gibert, J., 2009. Ecosystem engineering at the sediment-water interface: bioturbation and consumer-substrate interaction. Oecologia, 161, 125138.
[133]Nogaro, G., Datry, T., Mermillod-Blondin, F. and Montuelle, B., 2010. Influence of streambed sediment clogging on microbial processes in the hyporheic zone. Freshwater Biol., 55, 12881302.
[134]Ojanguren, A.F. and Braña, F., 2003. Thermal dependence of embryonic growth and development in brown trout. J. Fish Biol., 62, 580590.
[135]Orghidan, T., 1959. Ein neuer Lebensraum des unterirdischen Wassers: Der hyporheische Biotop. Arch. Hydrobiol., 55, 392414.
[136]Orghidan, T., 2010. A new habitat of subsurface waters: the hyporheic biotope. Fundam. Appl. Limnol., 176, 291302.
[137]Peyrard, D., Sauvage, S., Vervier, P., Sánchez-Pérez, J.M. and Quintard, M., 2008. A coupled vertically integrated model to describe lateral exchanges between surface and subsurface in large alluvial floodplains with a fully penetrating river. Hydrol. Process., 22, 42574273.
[138]Pinay, G. and Décamps, H., 1988. The role of riparian woods in regulating nitrogen fluxes between the alluvial aquifer and surface water: a conceptual model. Regul. Riv., 2, 507516.
[139]Piscart, C., Moreteau, J.C. and Beisel, J.N., 2005. Biodiversity and structure of macroinvertebrate communities along a small permanent salinity gradient (Meurthe River, France). Hydrobiologia, 551, 227236.
[140]Piscart, C., Genoel, R., Dolédec, S., Chauvet, E. and Marmonier, P., 2009. Effects of intense agricultural practices on heterotrophic processes in streams. Environ. Pollut., 157, 10111018.
[141]Piscart, C., Bergerot, B., Lafaille, P. and Marmonier, P., 2010. Are amphipod invaders a threat to regional biodiversity? Biol. Invasions, 12, 853863.
[142]Piscart, C., Roussel, J.M., Dick, J.T.A., Grosbois, G. and Marmonier, P., 2011. Effects of coexistence on the habitat use and trophic ecology of interacting native and invasive amphipods. Freshwater Biol., 56, 325334.
[143]Poole, G.C., Stanford, J.A., Running, S.W., Frissell, C.A., Woessner, W.W. and Ellis, B.K., 2004. A patch hierarchy approach to modeling surface and subsurface hydrology in complex flood-plain environments. Earth Surf. Process. Landforces, 29, 12591274.
[144]Poole, G.C., O'Daniel, S.J., Jones, K.L., Woessner, W.W., Bernhardt, E.S., Helton, A.M., Stanford, J.A., Boer, B.R. and Beechie, T.J., 2008. Hydrologic spiralling: the role of multiple interactive flow paths in stream ecosystems. River Res. Appl., 24, 10181031.
[145]Puig, M.A., Sabater, F. and Malo, J., 1990. Benthic and hyporheic faunas of mayflies and stoneflies in the Ter River Basin (NE-Spain). In: Campbell, I.C. (ed.), Mayflies and Stoneflies: Life Histories and Biology, Kluwer Academic Publishers, Dordrecht, 255258.
[146]Riss, H.W., Meyer, E.I. and Niepagenkemper, O., 2008. A novel and robust device for repeated small-scale oxygen measurement in riverine sediments implications for advanced environmental surveys. Limnol. Oceanogr. Met., 6, 200207.
[147]Robertson, A.L. and Wood, P.J., 2010. Ecology of the hyporheic zone: origins, current knowledge and future directions. Fundam. Appl. Limnol., 176, 279289.
[148]Romani, A.M. and Sabater, S., 2001. Structure and activity of rock and sand biofilms in a Mediterranean stream. Ecology, 82, 32323245.
[149]Romani, A.M., Fischer, H., Mille-Lindblom, C. and Tranvik, L.J., 2006. Interactions of bacteria and fungi on decomposing litter: Differential extracellular enzyme activities. Ecology, 87, 25592569.
[150]Ryder, D.S., 2009. Responses of epixylic biofilm metabolism to water level variability in a regulated floodplain river. J. N. Am. J. Benthol. Soc., 23, 214223.
[151]Sabater, S., Butturini, A., Clement, J.C., Burt, T., Dowrick, D., Hesfting, M., Maitre, V., Pinay, G., Postolache, C., Rzepecki, M. and Sabater, F.N., 2003. Nitrogen removal by riparian buffers under various N loads along a European climatic gradient: patterns and factors of variation. Ecosystems, 6, 2030.
[152]Sánchez-Pérez, J.M., Bouey, C., Sauvage, S., Teissier, S., Antigüedad, I. and Vervier, P., 2003a. A standardized method for measuring in situ denitrification in shallow aquifers: numerical validation and measurements in riparian wetlands. Hydrol. Earth Sci. Syst., 7, 8796.
[153]Sánchez-Pérez, J.M., Vervier, P., Garabétian, F., Sauvage, S., Loubet, M., Rols, J.L., Bariac, T. and Weng, P., 2003b. Nitrogen dynamics in the shallow groundwater of a riparian wetland zone of the Garonne, Southwester France: nitrate inputs, bacterial densities, organic matter supply and denitrification measurements. Hydrol. Earth Sci. Syst., 7, 97107.
[154]Sánchez-Pérez, J.M., Gerino, M., Sauvage, S., Dumas, P., Maneux, E., Julien, F., Winterton, P. and Vervier, P., 2009. Effects of nutrient pollution on in-stream nutrient retention in an agricultural watershed. Ann. Limnol. ‐ Int. J. Limnol., 45, 7992.
[155]Schmid, P.E. and Schmid-Araya, J.M., 2010. Scale-dependent relations between bacteria, organic matter and invertebrates in a headwater stream. Fundam. Appl. Limnol., 176, 365375.
[156]Sebilo, M., Billen, G., Grably, M. and Mariotti, A., 2003. Isotopic composition of nitrate–nitrogen as a marker of riparian and benthic denitrification at the scale of the whole Seine river system. Biogeochemistry, 63, 3551.
[157]Sinsabaugh, R.L., Antibus, R.K., Linkins, A.E., McClaugherty, C.A., Rayburn, L., Repert, D. and Weiland, T., 1993. Wood decomposition – nitrogen  and  phosphorous dynamics in relation to extracellular enzyme activity. Ecology, 74, 15961593.
[158]Stanford, J.A. and Ward, J.V., 1988. The hyporheic habitat of river ecosystems. Nature, 335, 6466.
[159]Strayer, D.L., 2010. Alien species in fresh waters: ecological effects, interactions with other stressors, and prospects for the future. Freshwat. Biol., 55 (Suppl. 1), 152174.
[160]Taleb, A., Belaidi, N., Sanchez-Perez, J.M., Vervier, P., Sauvage, S. and Gagneur, J., 2008. The role of the hyporheic zone in the nitrogen dynamics within a semi-arid gravel bed stream located downstream of a heavily polluted reservoir (Tafna wadi, Algeria).  River Res. Appl., 24, 183196.
[161]Thompson, R.C., Moschella, P.S., Jenkins, S.R., Norton, T.A. and Hawkins, S.J., 2005. Differences in photosynthetic marine biofilm between sheltered and moderately exposed rocky shores. Mar. Ecol. Prog. Ser., 296, 5363.
[162]Tockner, K., Ward, J.V., Edwards, P.J. and Kollmann, J., 2002. Riverine landscapes: an introduction. Freshwater Biol., 47, 497500.
[163]Tonina, D. and Buffington, J.M., 2009. Hyporheic Exchange in Mountain Rivers I: Mechanics and Environmental Effects. Geogr. Compass, 3, 10631086.
[164]Tringe, S.G., von Mering, C., Kobayashi, A., Salamov, A.A., Chen, K., Chang, H.W., Podar, M., Short, J.M., Mathur, E.J., Detter, J.C., Bork, P., Hugenholtz, P. and Rubin, E.M., 2005. Comparative metagenomics of microbial communities. Science, 308, 554557.
[165]Valett, H.M., Morrice, J.A., Dahm, C.N. and Campana, M.E., 1996. Parent lithology, groundwater-surface water exchange and nitrate retention in headwater streams. Limnol. Oceanogr., 41, 333345.
[166]Vandenkoornhuyse, P., Dufresne, A., Quaiser, A., Gouesbet, G., Binet, F., Francez, A.J., Mahé, S., Bormans, M., Lagadeuc, Y. and Couée, I., 2010. Integration of molecular functions at the ecosystemic level: breakthroughs and future goals of environmental genomics and post-genomics. Ecol. Lett., 13, 776791.
[167]Vervier, P., Bonvallet-Garey, S., Sauvage, S., Maurice, V. and Sánchez-Pérez, J.M., 2009. Influence of the hyporheic zone on the phosphorus dynamics of a large gravel bed river, Garonne river, France. Hydrol. Process., 23, 18011812.
[168]Ward, J.V. and Voelz, N.J., 1994. Groundwater fauna of the South Platte River system, Colorado. In: Gilbert, J., Danielopol, D.L. and Stanford, J.A. (eds.), Groundwater Ecology, Academic Press, San Diego, 391423.
[169]Weng, P., Sánchez-Pérez, J.M., Sauvage, S., Vervier, P. and Giraud, F., 2003. Assessment of the quantitative and qualitative buffer function of an alluvial wetland: Hydrological modelling of a large floodplain (Garonne River, France). Hydrol. Process., 17, 23752393.
[170]Werner, S. and Rothhaupt, K.O., 2007. Effects of the invasive bivalve Corbicula fluminea on settling juveniles and other benthic taxa. J. N. Am. Benthol. Soc., 26, 673680.
[171]Williams, D.D. and Hynes, H.B.N., 1974. The occurrence of benthos deep in the substratum of a stream. Freshwater Biol., 4, 233256.
[172]Williams, D.D. and Hynes, H.B.N., 1976. The recolonization mechanisms of stream benthos. Oikos, 27, 265272.
[173]Williams, J.B., Mills, G., Bamhurst, D., Southern, S. and Garvin, N., 2009. Transport and degradation of a trichloroethylene plume within a stream hyporheic zone. Proc. 2007 Nat. Conf. Environ. Sci. Tech., 4, 189194.
[174]Woessner, W.W., 2000. Stream and fluvial plain ground water interactions: rescaling hydrogeologic thought. Ground Water, 38, 423429.
[175]Wood, P.J., Gunn, J., Smith, H. and Abas-Kutty, A., 2005. Flow permanence and macroinvertebrate community diversity within groundwater dominated headwater streams and springs. Hydrobiologia, 545, 5564.
[176]Wood, P.J., Boulton, A.J., Little, S. and Stubbington, R., 2010. Is the hyporheic zone a refugium for macroinvertebrates during severe low flow conditions? Fundam. Appl. Limnol., 176, 377390.


Related content

Powered by UNSILO

The role of organisms in hyporheic processes: gaps in current knowledge, needs for future research and applications

  • P. Marmonier (a1), G. Archambaud (a2), N. Belaidi (a3), N. Bougon (a4), P. Breil (a5), E. Chauvet (a6) (a7), C. Claret (a8), J. Cornut (a6) (a7), T. Datry (a4), M.-J. Dole-Olivier (a1), B. Dumont (a2), N. Flipo (a9), A. Foulquier (a1) (a4), M. Gérino (a6) (a7), A. Guilpart (a10), F. Julien (a6) (a7), C. Maazouzi (a1), D. Martin (a1), F. Mermillod-Blondin (a1), B. Montuelle (a4) (a11), Ph. Namour (a4) (a12), S. Navel (a1), D. Ombredane (a10), T. Pelte (a13), C. Piscart (a1), M. Pusch (a14), S. Stroffek (a13), A. Robertson (a15), J.-M. Sanchez-Pérez (a6) (a7), S. Sauvage (a6) (a7), A. Taleb (a3), M. Wantzen (a16) and Ph. Vervier (a6) (a7) (a17)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.