Skip to main content Accessibility help
×
Home

The response of phytoplankton, zooplankton and macrozoobenthos communities to change in the water supply from surface to groundwater in aquaculture ponds

  • Zorka Dulić (a1), Zoran Marković (a1), Miroslav Živić (a2), Miloš Ćirić (a3), Marko Stanković (a1), Gordana Subakov-Simić (a2) and Ivana Živić (a2)...

Abstract

Investigating forces driving the structure of aquatic communities has long been an important issue in ecology. In the present study, we focused on the effects of changed water supply for aquaculture ponds on phytoplankton, zooplankton and macrozoobenthos communities during two seasons of rearing common carp. We compared these communities between two types of inflow water: surface sources of water – a reservoir pond, two open wells and a small stream and groundwater – deep tube well. Significant changes were observed in environmental variables after the introduction of the groundwater source: oxygen concentration and water hardness decreased, while conductivity, phosphorus and un-ionized ammonia increased. Results revealed that all investigated groups, except Mollusca (macrozoobenthos), decreased in species richness, abundance and biomass due to changed water chemistry, but differed in the level of susceptibility. Rotifera and Cladocera were the most affected showing a sharp decline in density and number of species since 66% of species disappeared from the ponds. The abundance of Copepoda was relatively high although significantly lower under new conditions, with adults being more tolerant to changed inflow water than nauplii larvae. Phytoplankton had the highest potential to replace previous species with newcomers more adapted to changed water chemistry, providing 36 immigrant species, whereas 49 became extinct. Although mainly influenced by fish predation, Chironomidae (macrozoobenthos) were undoubtedly affected by changed water chemistry. These results suggest profound changes in three key ecological groups produced by significant changes of important environmental variables and water quality after the shift from surface to groundwater supply.

Copyright

Corresponding author

*Corresponding author: zorkad@agrif.bg.ac.rs

References

Hide All
[1]Abrantes, N., Nogueira, A. and Goncalves, F., 2009. Short-term dynamics of cladocerans in a eutrophic shallow lake during a shift in the phytoplankton dominance. Ann. Limnol. - Int. J. Lim., 45, 237245.
[2]Adámek, Z., Sukop, I., Rendón, P.M. and Kouřil, J., 2003. Food competition between 2+tench (Tinca tinca L.), common carp (Cyprinus carpio L.) and bigmouth buffalo (Ictiobus cyprinellus Val.) in pond polyculture. J. Appl. Ichthyol., 19, 165169.
[3]Alabaster, J.S. and Lloyd, R., 1980. Water Quality Criteria for Freshwater Fish, Butter-Worths, London, 297 p.
[4]APHA 1998. Standard Methods for the Examination of Water and Wastewater, American Public Health Association, Washington, DC.
[5]Bailey, S.A., Duggan, I.C., Van Overdijk, C.D.A., Johengen, T.H., Reid, D.F. and Macisaac, H.J., 2004. Salinity tolerance of diapausing eggs of freshwater zooplankton. Freshwat. Biol., 49, 286295.
[6]Biswas, J.K., Rana, S., Bhakta, J.N. and Jana, B.B., 2009. Bioturbation potential of Chironomid larvae for the sediment–water phosphorus exchange in simulated pond systems of varied nutrient enrichment. Ecol. Eng., 35, 14441453.
[7]Blinn, D.W. and Bailey, P.C.E., 2001. Land-use influence on stream water quality and diatom communities in Victoria, Australia: a response to secondary salinization. Hydrobiologia, 466, 231244.
[8]Boronat, L., Miracle, M.R. and Armengol, X., 2001. Cladoceran assemblages in a mineralization gradient. Hydrobiologia, 442, 7588.
[9]Brock, M.A., Nielsen, D.L. and Crossie, K., 2005. Changes in biotic communities developing from freshwater wetland sediments under experimental salinity and water regimes. Freshwat. Biol., 50, 13761390.
[10]Cáceres, C. and Soluk, D., 2002. Blowing in the wind: a field test of overland dispersal and colonization by aquatic invertebrates. Oecologia, 131, 402408.
[11]Céréghino, R., Ruggiero, A., Marty, P. and Angélibert, S., 2008. Biodiversity and distribution patterns of freshwater invertebrates in farm ponds of a south-western French agricultural landscape. Hydrobiologia, 597, 4351.
[12]Chittapun, S., Pholpunthin, P. and Segers, H., 2005. Restoration of tropical peat swamp rotifer communities after perturbation: an experimental study of recovery of rotifers from the resting egg bank. Hydrobiologia, 546, 281289.
[13]Cho, W.-S., Park, Y.-S., Park, H.-K., Kong, H.Y. and Chon, T.-S., 2011. Ecological informatics approach to screening of integrity metrics based on benthic macroinvertebrates in streams. Ann. Limnol. - Int. J. Lim., 47, 5162.
[14]De Meester, L., Gomez, A., Okamura, B. and Schwenk, K., 2002. The monopolization hypothesis and the dispersal-gene flow paradox in aquatic organisms. Acta Oecol., 23, 121135.
[15]Dolédec, S. and Chessel, D., 1994. Co-inertia analysis: an alternative method for studying species–environment relationships. Freshwat. Biol., 31, 277294.
[16]Flosner, D., 1972. Krebstiere, Crustacea, Kiemen und Blattfußer, Branchiopoda, Fischlause, Branchiura. Die tierwelt deutschlands, VEB Gustav Fischer Verlag, Jena, 501 p.
[17]Fritz, S.C., Cumming, B.F., Gasse, F. and Laird, K.R., 1999. Diatoms as indicators of hydrologic and climatic changes in saline lakes. In: Stoermer, E.F. and Smol, J.P. (eds.), The Diatoms: Applications for the Environmental and Earth Sciences, Cambridge University Press, UK, 4172.
[18]Glöer, P. and Meier-Brook, C., 2003. Süswassermollusken, Deutscher Jugenbund für Naturbeoachung, Hamburg, 134 p.
[19]Green, J., 1993. Zooplankton associations in East African lakes spanning a wide salinity range. Hydrobiologia, 267, 249256.
[20]Gyllström, M. and Hansson, L.A., 2004. Dormancy in freshwater zooplankton: induction, termination and the importance of benthic-pelagic coupling. Aquat. Sci., 66, 274295.
[21]Hammer, U.T., Shamess, J. and Haynes, R., 1983. The distribution and abundance of algae in saline lakes of Saskatchewan, Canada. Hydrobiologia, 105, 126.
[22]Hart, B.T., Bailey, P., Edwards, R., Hortle, K., James, K., McMahon, A., Meredith, C. and Swadling, K., 1991. A review of the salt sensitivity of the Australian freshwater biota. Hydrobiologia, 210, 105144.
[23]Hillebrand, H., Dürselen, C.D., Kirschtel, D., Pollingher, U. and Zohary, T., 1999. Biovolume calculation for pelagic and bentic microalgae. J. Phycol., 35, 403424.
[24]Horvath, L., Tamas, G. and Seagrave, C., 2002. Carp and Pond Fish Culture, Blackwell Science, Oxford, 169 p.
[25]Huber-Pestalozzi, G., Komarek, J. and Fott, B., 1983. Phytoplankton des süβwasser. Chlorophyceae, ordnung: Chlorococcales, E. Schweizerbartsche Verlagsbuchhandung, Stuttgart, 1044 p.
[26]Hull, A., 1997. The pond life project: a model for conservation and sustainability. In: Boothby, J. (ed.), British Pond Landscape. Proceedings from the UK Conference of the Pond Life Project, Liverpool, 101109.
[27]Hynes, H.B.N., 1966. The Biology of Polluted Water, Liverpool University Press, Liverpool, 202 p.
[28]Jeffries, M.J., 2002. Evidence for individualistic species assembly creating convergent predator: prey ratios among pond invertebrate communities. J. Anim. Ecol., 71, 173184.
[29]Jenkins, D.G. and Buikema, A.L., 1998. Do similar communities develop in similar sites? A test with zooplankton structure and function. Ecol. Monogr., 68, 421443.
[30]Jurkiewicz-Karnkowska, E., 2008. Aquatic mollusk communities in riparian sites of different size, hydrological connectivity and succession stage. Pol. J. Ecol., 56, 99118.
[31]Komárek, J. and Anagnostidis, K., 1998. Süβwasserflora von mitteleuropa. Cyanoprokaryota. Chroococcales, Spektrum Akademischer Verlag, Heidelberg, Berlin, 548 p.
[32]Komárek, J. and Anagnostidis, K., 2005. Süβwasserflora von mitteleuropa, Cyanoprokaryota. Oscillatoriales, Spektrum Akademischer Verlag, Heidelberg, Berlin, 759 p.
[33]Koste, W., 1978. Rotatoria. Die Radertiere Mitteleuropas, Überorderung Monogononta, Gerbruder Brontraeger, Berlin, 673 p.
[34]Krammer, J. and Lange-Bertalot, H., 1986. Süβwasserflora von mitteleuropa. Bacillariophyceae. Naviculaceae, Gustav Fischer Verlag, Stuttgart, 876 p.
[35]Krammer, J. and Lange-Bertalot, H., 1988. Süβwasserflora von mitteleuropa. Bacillariophyceae. Bacillariaceae, Epithemiaceae, Surirellaceae, Gustav Fischer Verlag, Stuttgart, 596 p.
[36]Kuczyńska-Kippen, N. and Joniak, T., 2010. The impact of water chemistry on zooplankton occurrence in two types (field versus forest) of small water bodies. Int. Rev. Hydrobiol., 95, 130141.
[37]Louette, G. and De Meester, L., 2005. High dispersal capacity of cladoceran zooplankton in newly founded communities. Ecology, 86, 353359.
[38]Mayer, J., Dokulil, M.T., Salbrechter, B.M., Posch, T., Pfister, G., Kirschner, A.K.T., Velimirov, B., Steitz, A. and Ulbricht, T., 1997. Seasonal successions and trophic relations between phytoplankton, zooplankton, ciliate and bacteria in a hypertrophic shallow lake in Vienna, Austria. Hydrobiologia, 342/343, 165174.
[39]McAleece, N., 1997. Biodiversity Pro. The Natural History Museum, London.
[40]Milstein, A., 1992. Ecological aspects of fish species interactions in polyculture ponds. Hydrobiologia, 231, 177186.
[41]Moller Pillot, H.K.M., 2009. Chironomidae Larvae of the Netherlands and Adjacent Lowlands: Biology and Ecology of the Chironomini, KNNV Publishing, Zeist, 288 p.
[42]Moog, O., 2002. Fauna Aquatica Austriaca. A comprehensive species inventory of Austrian aquatic organisms with ecological notes, Federal Ministry of Agriculture, Forestry, Environment and Water Management, Vienna.
[43]Morduhai-Boltiviskoi, B.D., 1954. Materialji po srednemu vesu vodnih bespozvonočnih dnepra. Trudi problemnih i tematičeskih sovešcanija zin. Problemy gidrobiologii vnutrennikh vod: Tr. problem. i temat. soveshch. M. Zool. in-t AN SSSR. Vyp., 2, 223241.
[44]Nielsen, D.L., Brock, M.A., Crosslé, K., Harris, K., Healey, M. and Jarosinski, I., 2003. The effects of salinity on aquatic plant germination and zooplankton hatching from two wetland sediments. Freshwat. Biol., 48, 22142223.
[45]Nielsen, D.L., Smith, D., Petrie, R., 2012. Resting egg banks can facilitate recovery of zooplankton communities after extended exposure to saline conditions. Freshwat. Biol., 57, 13061314.
[46]North, E.W. and Houde, E.D., 2003. Linking ETM physics, zooplankton prey, and fish early-life histories to striped bass Morone saxatilis and white perch M. americana recruitment. Mar. Ecol. Prog. Ser., 260, 219236.
[47]Pechar, L., 2000. Impact of long-term changes in fishery management on the trophic level water quality in Czech fish ponds. Fisheries Manage. Ecol., 7, 2331.
[48]Potužak, J., Huda, J. and Pechar, L., 2007. Changes in fish production effectivity in eutrophic fishponds – impact of zooplankton structure. Aquacult. Int., 15, 201210.
[49]Rahman, M., Kadowaki, S., Balcombe, S. and Wahab, M., 2010. Common carp (Cyprinus carpio L.) alters its feeding niche in response to changing food resources: direct observations in simulated ponds. Ecol. Res., 25, 303309.
[50]Remane, A., 1934. Die brackwasserfauna. Verzeichnis der Veröffentlichungen Goldsteins, 36, 3474.
[51]Rettig, J., Schuman, L. and McCloskey, J., 2006. Seasonal patterns of abundance: do zooplankton in small ponds do the same thing every spring-summer? Hydrobiologia, 556, 193207.
[52]Reynolds, C. S., 2006. The Ecology of Phytoplankton, Cambridge University Press, Cambridge, 552 p.
[53]Rozkošny, R., 1980. Klič larev vodneho hmyzu, Ceskoslovenska Akademie Ved, Praha, Czech Republic, 521 p.
[54]Ruggiero, A., Céréghino, R., Figuerola, J., Marty, P. and Angélibert, S., 2008. Farm ponds make a contribution to the biodiversity of aquatic insects in a French agricultural landscape. C. R. Biol., 331, 298308.
[55]Simpson, E.H., 1949. Measurement of diversity. Nature, 163, 688.
[56]Smayda, T.J., 1978. From phytoplankters to biomass. In: Sournia, A. (ed.), Phytoplankton Manual. Monographs on Oceanographic Methodology 6, UNESCO, Paris, 273279.
[57]Stewart, A.J., 2001. A simple stream monitoring technique based on measurements of semi-conservative properties of water. J. Environ. Manage., 27, 3746.
[58]Ter Heerdt, G. and Hootsmans, M., 2007. Why biomanipulation can be effective in peaty lakes. Hydrobiologia, 584, 305316.
[59]Thioulouse, J., Chessel, D., Dole'Dec, S. and Olivier, J.M., 1997. Ade-4: a multivariate analysis and graphical display software. Stat. Comput., 7, 7583.
[60]Thompson, P.L. and Shurin, J.B., 2012. Regional zooplankton biodiversity provides limited buffering of pond ecosystems against climate change. J. Anim. Ecol., 81, 251259.
[61]Vallenduuk, H.J. and Moller Pillot, H.K.M., 2007. Chironomidae Larvae of the Netherlands and Adjacent Lowlands: General ecology and Tanypodinae, KNNV Publishing, Zeist, 144 p.
[62]Van Der Vlugt, J.C., Walker, P.A., Does, J. and Raat, A.J.P., 1992. Fisheries management as an additional lake restoration measure: biomanipulation scaling-up problems. Hydrobiologia, 233, 213224.
[63]Waterkeyn, A., Vanschoenwinkel, B., Vercampt, H. and Grillas, P., 2011. Long-term effects of salinity and disturbance regime on active and dormant crustacean communities. Limnol. Oceanogr., 56, 10081022.
[64]Wegl, R. 1983. Index für die Limnosaprobitat. Wass. Abwass., 26, 1175.
[65]Wesselingh, F.P., Cadée, G.C. and Renema, W., 1999. Flying high: on the airborne dispersal of aquatic organisms as illustrated by the distribution histories of the gastropod genera Tryonia and Planorbarius. Neth. J. Geosci., 78, 165174.
[66]Williams, P., Biggs, J., Corfield, A., Fox, G., Walker, D. and Whitfield, M., 1997. Designing new ponds for wildlife. Br. Wildl., 8, 137150.
[67]Williams, P., Whitfield, M., Biggs, J., Bray, S., Fox, G., Nicolet, P. and Sear, D., 2004. Comparative biodiversity of rivers, streams, ditches and ponds in an agricultural landscape in Southern England. Biol. Conserv., 115, 329341.
[68]Wood, P.J., Greenwood, M.T. and Agnew, M.D., 2003. Pond biodiversity and habitat loss in the UK. Area, 35, 206216.
[69]Yang, Y.F., Huang, X.F., Liu, J.K. and Jiao, N.Z., 2005. Effects of fish stocking on the zooplankton community structure in a shallow lake in China. Fisheries Manage. Ecol., 12, 8189.
[70]Zelinka, M. and Marvan, P., 1961. Zur Prazisierung der biologischen Klassifikation der Reinheit flisender Gewasser. Arch. Hydrobiol., 57, 389407.

Keywords

Related content

Powered by UNSILO
Type Description Title
PDF
Supplementary materials

OLM_limn130086
tables

 PDF (74 KB)
74 KB

The response of phytoplankton, zooplankton and macrozoobenthos communities to change in the water supply from surface to groundwater in aquaculture ponds

  • Zorka Dulić (a1), Zoran Marković (a1), Miroslav Živić (a2), Miloš Ćirić (a3), Marko Stanković (a1), Gordana Subakov-Simić (a2) and Ivana Živić (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.