Skip to main content Accessibility help

Response of bottom sediment stability after carp removal in a small lake

  • Ying-Tien Lin (a1) and Chin H. Wu (a2)


This study combined several features of acoustic and electromagnetic (EM) waves-based devices including sub-bottom profiler (SBP), side-scan sonar (SSS) and ground penetrating radar (GPR), and in situ sediment data to study responses of bottom sediments after carp removal in Lake Wingra. In 2007, i.e., before carp removal, macrophytes only grew to a water depth of 2 m. Meanwhile, GPR data showed no visible sublayer in vegetated regions, while SBP data revealed a loose and fluffy sediment layer in unvegetated regions, easily affected by wave or current motions. The field data showed that suspended sediment concentrations (SSC) were much greater in unvegetated regions than those in vegetated regions during a one-day wind event, and the resuspended sediments could remain suspended in the water column for two days. In 2009, i.e., after more than half (51%) of carp were removed, the fluffy sediment layer recognized by SBP became thinner or even disappeared, and both SBP and SSS results showed that submerged macrophytes started growing in deeper water. In situ sediment data presented that bulk sediment density and critical shear stress became greater, and bottom sediments consolidated and were harder to be resuspended. Secchi depth collected between 2008 and 2010 was greater than that in the previous 10 years, indicated clearer water state. In short, the fluffy sediment layer because of carp activities may be the main source for suspended sediments to deteriorate water quality. Removal of carp is crucial for stabilizing bottom sediment and improving water clarity in this small lake.

    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Response of bottom sediment stability after carp removal in a small lake
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Response of bottom sediment stability after carp removal in a small lake
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Response of bottom sediment stability after carp removal in a small lake
      Available formats


Corresponding author

*Corresponding author:


Hide All
[1]Annan, A.P., 2005. Ground penetrating radar. In: Butler, K. (ed.), Near Surface Geophysics, Society of Exploration Geophysicists, Tulsa, 357438.
[2]Annan, A.P. and Davis, J.L., 1992. Design and development of a digital ground penetrating radar system. In: Pilon, J. (ed.), Ground Penetrating Radar, Geological Survey of Canada Special Paper, Vol. 90 (4), Canada Communication Group, Ottawa, 1523.
[3]Arcone, S.A., Peapples, P.R. and Liu, L., 2003. Propagation of a ground-penetrating radar (GPR) pulse in a thin-surface waveguide. Geophysics, 68, 19221933.
[4]ASTM Standard D1587-08, 2007. ASTM D1587-08 Standard Practice for Thin-Walled Tube Sampling of Soil for Geotechnical Purposes, ASTM International, West Conshohocken, PA.
[5]Ballard, R.D., Stager, L.E., Master, D., Yoerger, D., Mindell, D., Whitcomb, L.L., Singh, H. and Piechota, D., 2002. Iron Age shipwrecks in deep water off Ashkelon, Israel. Am. J. Archaeol., 106, 151168.
[6]Barko, J.W., Gunnison, D. and Carpenter, S.R., 1991. Sediment interaction with submersed macrophyte growth and community dynamics. Aquat. Biol., 41, 4165.
[7]Breukelaar, A.W., Lammens, E.H.R.R., Breteler, J.G.P.K. and Tatrai, I., 1994. Effects of benthivorous bream (Abramis brama) and carp (Cyprinus carpio) on sediment resuspension and concentrations of nutrients and chlorophyll a. Freshwater Biol., 32, 113121.
[8]Burger, H.R., Sheehan, A.F. and Jones, C.H., 2006. Introduction to Applied Geophysics: Exploring the Shallow Subsurface, W. W. Norton & Company, New York, 554 p.
[9]Cahoon, W.G., 1953. Commercial carp removal at Lake Mattamuskeet, North Carolina. J. Wildlife Manage., 17, 312317.
[10]Campbell Scientific Inc., 2011. OBS-3A Turbidity and Temperature Monitoring System-Operator's Manual, Campbell Scientific Inc., Logan, 58 p.
[11]Cheng, N.S., 1997. Simplified settling velocity formula for sediment particle. J. Hydraul. Eng., 123, 149152.
[12]Crivelli, A.J., 1983. The destruction of aquatic vegetation by carp. A comparison between Southern France and the United States. Hydrobiologia, 106, 3741.
[13]Cronin, G., William, M.L. Jr. and Schiehser, M.A., 2006. Influence of freshwater macrophytes on the littoral ecosystem structure and function of a young Colorado reservoir. Aquat. Bot., 85, 3743.
[14]Damuth, J.E., 1980. Use of high-frequency (3.5 kHz–12 kHz) echograms in the study of near-bottom sedimentation processes in the deep-sea: a review. Mar. Geol., 38, 5175.
[15]Fonseca, M., 1996. The role of seagrasses in nearshore sedimentary processes: a review. In: Nordstrom, K. and Roman, C.T. (eds.), Estuarine Shore: Evolution, Environments and Human Alternations, John Wiley & Sons, London, 261286.
[16]Garcia, G.A., Garcia-Gil, S. and Vilas, F., 2004. Echo characters and recent sedimentary processes as indicted by high-resolution sub-bottom profiling in Ria de Vigo, NW Spain. Geo. Mar. Lett., 24, 3245.
[17]Hamilton, D.P. and Mitchell, S.F., 1997. An empirical model for sediment resuspension in shallow lakes. Hydrobiologia, 317, 209220.
[18]Havens, K.E., 1991. Fish-induced sediment resuspension: effects on phytoplankton biomass and community structure in a shallow hypereutrophic lake. J. Plankton Res., 13, 11631176.
[19]Huvenne, V.A.I., Blondel, P.H. and Henriet, J.-P., 2002. Textural analyses of sidescan sonar imagery from two mound provinces in the Porcupine Seabight. Mar. Geol., 189, 323341.
[20]James, W.F. and Barko, J.W., 1991. Influences of submersed aquatic macrophytes on zonation of sediment accretion and composition, Eau Galle Reservoir, Wisconsin. Technical Reports A-91-1, US Army Engineer Waterways Experiment Station, Vicksburg, MS, 23 p.
[21]James, W.F. and Barko, J.W., 1994. Macrophyte influences on sediment resuspension and export in a shallow impoundment. Lake Reserv. Manage., 10, 95102.
[22]Jeppesen, E., Jensen, J.P., Kristensen, P., Søndergaard, M., Mortensen, E., Sortkjaer, O. and Olrik, K., 1990. Fish manipulation as a lake restoration tool in shallow, eutrophic, temperature lakes 2: threshold levels, long-term stability and conclusions. Hydrobiologia, 200/201, 219227.
[23]Jeppesen, E., Søndergaard, M. and Christoffersen, K. (eds.), 1998. The Structuring Role of Submerged Macrophytes in Lakes, Ecological Series, Vol. 131, Springer–Verlag, New York, 423 p.
[24]Jones, J.J., Collins, A.L., Naden, P.S. and Sear, D.A., 2012. The relationship between fine sediment and macrophyte in rivers. River Res. Appl., 28, 10061018.
[25]King, D.R. and Hunt, G.S., 1967. Effect of carp on vegetation in a Lake Erie marsh. J. Wildlife Manage., 31, 181188.
[26]Koch, E.W., 2001. Beyond light: physical, geological, and geochemical parameters as possible submersed aquatic vegetation habitat requirements. Estuaries, 24, 117.
[27]Lee, C., Wu, C.H. and Hoopes, J.A., 2004. Automated sediment erosion testing system using digital imaging. J. Hydraul. Eng., 130, 771782.
[28]Lin, Y.T., Schuettpelz, C.C., Wu, C.H. and Fratta, D., 2009. A combined acoustic and electromagnetic wave-based techniques for bathymetry and subbottom profiling in shallow waters. J. Appl. Geophys., 68, 203218.
[29]Lin, Y.T., Wu, C.H., Fratta, D. and Kung, K.-J.S., 2010. Integrated acoustic and electromagnetic wave-based technique to estimate subbottom sediment properties. Near Surf. Geophys., 8, 213221.
[30]Losee, R.F. and Wetzel, R.G., 1993. Littoral flow rates within and around submersed macrophyte communities. Freshwater Biol., 29, 717.
[31]Lougheed, V.L., Crosbie, B. and Chow-Fraser, P., 1988. Predictions on the effect of common carp (Cyprinus carpio) exclusion on water quality, zooplankton, and submergent macrophytes in a Great Lakes wetland. Can. J. Fish. Aquat. Sci., 55, 11891197.
[32]Maceina, M.J. and Shireman, J.V., 1980. The use of a recording fathometer for determination of distribution and biomass of hydrilla. J. Aquat. Plant Manage., 18, 3439.
[33]Madsen, J.D. and Warnke, E., 1983. Velocities of currents around and within submerged aquatic vegetation. Arch. Hydrobiol., 97, 389394.
[34]Madsen, J.D., Chambers, P.A., James, W.F., Koch, E.W. and Westlake, D.F., 2001. The interaction between water movement, sediment dynamics and submersed macrophytes. Hydrobiologia, 444, 7184.
[35]Matsuzaki, S.S., Usio, N., Takamura, N. and Washitani, I., 2007. Effects of common carp on nutrient dynamics and littoral community composition: roles of excretion and bioturbation. Fund. Appl. Limnol., 168, 2738.
[36]McNeil, J., Taylor, C. and Lick, W., 1996. Measurements of erosion of undisturbed bottom sediments with depth. J. Hydraul. Eng., 122, 316324.
[37]Mehta, A.J. and Parchure, T.M., 2000. Surface erosion of fine-grained sediment revisited. In: Flemming, B.W., Delafontaine, M.T. and Liebezeit, G. (eds.), Muddy coast dynamics and resource management, Elsevier, Amsterdam, 5574.
[38]Miller, S.A. and Crowl, T.A., 2006. Effects of common carp (Cyprinus carpio) on macrophytes and invertebrate communities in a shallow lake. Freshwater Biol., 51, 8594.
[39]Morang, A., Larson, R. and Gorman, L., 1997. Monitoring the coastal environment; Part III: geophysical and research methods. J. Coastal Res., 13, 10641085.
[40]Nepf, H.M., 1999. Drag, turbulence, and diffusion in flow through emergent vegetation. Water Resour. Res., 35, 479489.
[41]Nepf, H., Ghisalberti, M., White, B. and Murph, E., 2007. Retention time and dispersion associated with submerged aquatic canopies. Water Resour. Res, 43, W04422.
[42]Nitsche, F.O., Bell, R., Carbotte, S.M., Ryan, W.B.E. and Flood, R., 2004. Process-related classification of acoustic data from the Hudson River Estuary. Mar. Geol., 209, 131145.
[43]Petticrew, E.L. and Kalff, J., 1992. Water flow and clay retention in submerged macrophyte beds. Can. J. Fish. Aquat. Sci., 49, 24832489.
[44]Roberts, J., Chick, A., Oswald, L. and Thomoson, P., 1995. Effect of carp, Cyprinus carpio L., an exotic benthivorous fish, on aquatic plants and water quality in experimental ponds. Mar. Freshwater Res., 46, 11711180.
[45]Sabol, B.M., Melton, R.E. and Chamberlain, R. Jr., Doeing, P. and Haunert, K., 2002. Evaluation of a digital echo sounder system for detection of submersed aquatic vegetation. Estuaries, 25, 133141.
[46]Sambuelli, L. and Bava, S., 2012. Case study: a GPR survey on a morainic lake in northern Italy for bathymetry, water volume and sediment characterization. J. Appl. Geophys., 81, 4856.
[47]Sand-Jensen, K., 1998. Influence of submerged macrophytes on sediment composition and near-bed flow in lowland streams. Freshwater Biol., 39, 663679.
[48]Santamarina, J.C., Rinaldi, V.A., Fratta, D., Klein, K.A., Wang, Y.H., Cho, G.C., Cascante, G., 2005. A survey of elastic and electromagnetic properties of near-surface soil. In: Butler, K. (ed.), Near Surface Geophysics, Society of Exploration Geophysicists, Tulsa, 7187.
[49]Scheffer, M., Hosper, S.H., Meijer, M.L., Moss, B. and Jeppesen, E., 1993. Alternative equilibria in shallow lakes. Trends Ecol. Evol., 8, 275279.
[50]Scheffer, M., Rinaldi, S., Gragnani, A., Mur, L.R. and VanNes, E.H., 1997. On the dominance of filamentous cyanobacteria in shallow, turbid lakes. Ecology, 78, 272282.
[51]Schrage, L.J. and Downing, J.A., 2004. Pathways of increased water clarity after fish removal from Ventura Marsh: a shallow, eutrophic wetland. Hydrobiologia, 511, 215231.
[52]Sellmann, P.V., Delaney, A.J., Arcone, S.A., 1992. Sub-bottom surveying in lakes with ground-penetrating radar. CRREL Report 92-8, U.S. Army Engineering Cold Regions Research and Engineering Laboratory, Hanover, NH.
[53]Shawab, W.C., Rodrigues, R.W., Danforth, W.W. and Gowen, M.H., 1996. Sediment distribution on a storm-dominated insular shelf, Luquillo, Puerto Rico, U.S.A. J. Coastal Res., 12, 147159.
[54]Trebitz, A.S., Nichols, S.A., Carpenter, S.R. and Lathrop, R.C., 1993. Patterns of vegetation change in Lake Wingra following a Myriophyllum spicatum declie. Aquat. Bot., 46, 325340.
[55]Wenta, R., Sorsa, K., Hyland, G. and Schneider, T., 2009. City of Madison Road Salt Report 2008–2009. Public Health Madison – Dane County. Available online at: http://www.
[56]Wilkens, R.H. and Richardson, M.D., 1998. The influence of gas bubbles on sediment acoustic properties: in situ, laboratory, and theoretical results from Eckernforde Bay, Baltic Sea. Cont. Shelf Res., 18, 18591892.
[57]Zambrano, L., Scheffer, M. and Martinez-Ramos, M., 2001. Catastrophic response of lakes to benthivorous fish introduction. Oikos, 94, 344350.


Related content

Powered by UNSILO

Response of bottom sediment stability after carp removal in a small lake

  • Ying-Tien Lin (a1) and Chin H. Wu (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.