Skip to main content Accessibility help
×
Home

Relationships between three major stream assemblages and their environmental factors in multiple spatial scales

  • Mi-Jung Bae (a1), Yongsu Kwon (a1), Soon-Jin Hwang (a2), Tae-Soo Chon (a3), Hyung-Jae Yang (a4), In-Sil Kwak (a5), Jung-Ho Park (a6), Soon-A Ham (a7) and Young-Seuk Park (a1)...

Abstract

This study investigated the relationships of three major aquatic assemblages (diatom, macroinvertebrate, and fish) and environmental variables, including sub-basin, hydrology, land cover, and water quality variables on multiple scales. Samples were collected at 720 sampling sites on the Korean nationwide scale. Geological variables, including altitude and slope, showed a strong positive correlation with proportions of forest in land cover types and cobbles in substrates, while they were negatively correlated with water quality variables, including conductivity and total phosphorus. Considering the concordance of the different assemblages, species richness of fish and macroinvertebrates displayed significant correlation, and diatoms were significantly correlated with fish. However, diatoms did not show significant correlation with macroinvertebrates. Altitude and slope showed significant correlation with all biological variables of the three assemblages. Macroinvertebrates and fish showed positive relations with large substrate sizes. Indices of diatoms and macroinvertebrates well reflected the perturbation of water quality variables. However, fish indices showed a relatively low association with water quality variables, compared with those of diatoms and macroinvertebrates. These patterns were also confirmed by the ordination and prediction of biological indices with environmental variables through the learning process of a self-organizing map as well as random forest. Overall, our study supports the concept of multi-scale habitat filters and functional organization in streams, and is consistent with the recommended use of multiple biological indices with more than one assemblage for the assessment of the biotic integrity of aquatic ecosystems.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Relationships between three major stream assemblages and their environmental factors in multiple spatial scales
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Relationships between three major stream assemblages and their environmental factors in multiple spatial scales
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Relationships between three major stream assemblages and their environmental factors in multiple spatial scales
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: parkys@khu.ac.kr

References

Hide All
[1]Allan, J.D. and Castillo, M.M., 2007. Stream Ecology: Structure and Function of Running Waters, 2nd edn., Kluwer Academic Publishers, Boston, 436 p.
[2]Allan, J.D., Erickson, D.L. and Fay, J., 1997. The influence of catchment land use on stream integrity across multiple spatial scales. Freshwater Biol., 37, 149161.
[3]Allen, A.P., Whittier, T.R., Larsen, D.P., Kaufmann, P.R., O'Connor, R.J., Hughes, R.M., Stemberger, R.S., Dixit, S.S., Brinkhurst, R.O., Herlihy, A.T. and Paulsen, S.G., 1999. Concordance of taxonomic composition patterns across multiple lake assemblages: effects of scale, body size, and land use. Can. J. Fish. Aquat. Sci., 56, 20292040.
[4]American Public Health Association (APHA), American Water Works Association (AWWA), Water Environment Federation (WEF), 2005. Standard Methods for the Examination of Water and Wastewater: Contennial Edition (Standard Methods for the Examination of Water and Wastewater), 21th edn., American Public Health Association, Washington, DC.
[5]An, K.G. and Lee, E.H., 2006. Ecological health assessments of Yoogu stream using a fish community metric model. Korean J. Limnol., 39, 310319.
[6]Angermeier, P.L. and Schlosser, I.J., 1989. Species–area relationship for stream fishes. Ecology, 70, 14501462.
[7]Armitage, P.D., Moss, D., Wright, J.F. and Furse, M.T., 1983. The performance of a new biological water quality score system based on macroinvertebrates over a wide range of unpolluted running water sites. Water Res., 17, 333347.
[8]Barbour, M.T., Gerritsen, J., Snyder, B.D. and Stribling, J.B., 1999. Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Algal, Benthic Macroinvertebrates, and Fish, 2nd edn., EPA 841-B-99-002, U.S. Environmental Protection Agency, Office of Water, Washington, DC.
[9]Beyer, J., 1996. Fish biomarkers in marine pollution monitoring; evaluation and validation in laboratory and field studies, Academic Thesis, University of Bergen, Norway.
[10]Black, R.W., Munn, M.D. and Plotnikoff, R.W., 2004. Using macroinvertebrates to identify biota- and cover optima at multiple scales in the Pacific Northwest, USA. J. N. Am. Benthol. Soc., 23, 340362.
[11]Breiman, L., 2001. Random forests. Mach. Learn., 45, 532.
[12]Carter, J.L., Fend, S.V. and Kennelly, S.S., 1996. The relationships among three habitat scales and stream benthic invertebrate community structure. Freshwater Biol., 35, 109124.
[13]DIN 38410, 1990. German standard methods for the examination of water, waste water and sludge: Biological-ecological examination of water (group M): Procedure for the determination of the saprobic index on the basis of benthic communities (M2), Deutsches Institut für Normung E.V., Berlin, 10 p.
[14]Duong, T.T., Feirtet-Mazel, A., Coste, M., Dang, D.K. and Boudou, A., 2007. Dynamics of diatom colonization process in some rivers influenced by urban pollution. Ecol. Indic., 7, 839851.
[15]European Commission, 2000. Directive 2000/60/EC of the European Parliament and of the Council establishing a framework for Community action in the field of water policy. Off. J. Eur. Comm., L327, 172.
[16]Flinders, C.A., Horwitz, R.J. and Belton, T., 2008. Relationship of fish and macroinvertebrate communities in the mid-Atlantic uplands: Implications for integrated assessments. Ecol. Indic., 8, 588598.
[17]Frissell, C.A., Liss, W.J., Warren, C.E. and Hurley, M.D., 1986. A hierarchical framework for stream habitat classification: viewing streams in a watershed context. Environ. Manage., 10, 199214.
[18]Gorman, O.T. and Karr, J.R., 1978. Habitat structure and stream fish communities. Ecology, 59, 507515.
[19]Gregory, S.V., Swanson, F.J. and Mckee, W.A., 1991. An ecosystem perspective of riparian zones. BioScience, 41, 540551.
[20]Grenouillet, G., Broe, S., Tudesque, L., Lek, S., Baraillé, Y. and Loot, G., 2007. Concordance among stream assemblages and spatial autocorrelation along a fragmented gradient. Divers. Distrib., 14, 592603.
[21]Griffith, M.B., Hillb, B.H., McCormick, F.H., Kaufmannd, P.R., Herlihye, A.T. and Sellef, A.R., 2005. Comparative application of indices of biotic integrity based on periphyton, macroinvertebrates, and fish to southern Rocky Mountain streams. Ecol. Indic., 5, 117136.
[22]Heino, J., Paavola, R., Virtanen, R. and Muotka, T., 2005. Searching for biodiversity indicators in running waters: do bryophytes, macroinvertebrates, and fish show congruent diversity patterns? Biodivers. Conserv., 14, 415428.
[23]Hering, D., Johnson, R.K., Kramm, S., Schmutz, S., Szoszkiewicz, K. and Verdonschot, P.F.M., 2006. Assessment of European streams with diatoms, macrophytes, macroinvertebrates and fish: a comparative metric-based analysis of organism response to stress. Freshwater Biol., 51, 17571785.
[24]Infante, D.M., Allan, J.D., Linke, S. and Norris, R.H., 2009. Relationship of fish and macroinvertebrate assemblages to environmental factors: implications for community concordance. Hydrobiologia, 623, 87103.
[25]Jain, A.K. and Dubes, R.C., 1988. Algorithms for Clustering Data, Prentice Hall, Englewood Cliffs, NJ, 304 p.
[26]Johnson, R.K., Furse, M.T., Hering, D. and Sandin, L., 2007. Ecological relationships between stream communities and spatial scale: implications for designing catchment level monitoring programmes. Freshwater Biol., 52, 939958.
[27]Justus, B.G., Petersen, J.C., Femmer, S.R., Davis, J.V. and Wallace, J.E., 2010. A comparison of algal, macroinvertebrate, and fish assemblage indices for assessing low-level nutrient enrichment in wadeable Ozark streams. Ecol. Indic., 10, 627638.
[28]Karr, J.R., 1981. Assessment of biotic integrity using fish communities. Fisheries, 66, 2171.
[29]Kelly, M.G. and Whitton, B.A., 1995. The trophic diatom index: a new index for monitoring eutrophication in rivers. J. Appl. Phycol., 7, 433444.
[30]Kohonen, T., 2001. Self-Organizing Maps, 3rd edn., Springer, Berlin, 501 p.
[31]Lenat, D.R. and Crawford, J.K., 1994. Effects of land use on water quality and aquatic biota of three North Carolina Piedmon streams. Hydrobiologia, 294, 185199.
[32]Liaw, A. and Wiener, M., 2002. Classification and regression by randomForest. R News, 2, 1822.
[33]Melo, A.S. and Froehlich, C.G., 2001. Macroinvertebrates in neotropical streams: richness patterns along a catchment and assemblage structure between 2 seasons. J. N. Am. Benthol. Soc., 20, 116.
[34]MOE/NIER, 2008. The survey and evaluation of aquatic ecosystem health in Korea. The Ministry of Environment/National Institute of Environmental Research, Incheon, Korea (in Korean with English summary).
[35]Paavola, R., Muotka, T., Virtanen, R., Heino, J. and Kreivi, P., 2003. Are biological classifications of headwater streams concordant across multiple taxonomic groups? Freshwater Biol., 48, 19121923.
[36]Paavola, R., Muotka, T., Virtanen, R., Heino, J., Jackson, D. and Mäki-Petäys, A., 2006. Spatial scale affects community concordance among fishes, benthic macroinvertebrates, and bryophytes in streams. Ecol. Appl., 16, 368379.
[37]Park, Y.S., Chang, J., Lek, S., Cao, W. and Brosse, S., 2003. Conservation strategies for endemic fish species threatened by the Three Gorges Dam. Conserv. Biol., 17, 17481785.
[38]Park, Y.-S., Song, M.-Y., Park, Y.-C., Oh, K.-H., Cho, E. and Chon, T.-S., 2007. Community patterns of benthic macroinvertebrates collected on the national scale in Korea. Ecol. Model., 203, 2633.
[39]Poff, N.L.R., 1997. Landscape filters and species traits: towards mechanistic understanding and prediction in stream ecology. J. N. Am. Benthol. Soc., 16, 391409.
[40]Poff, N.L.R. and Allan, J.D., 1995. Functional organization of stream fish assemblages in relation to hydrological variability. Ecology, 76, 606627.
[41]Poff, N.L.R. and Ward, J.V., 1990. Physical habitat template of lotic systems: Recovery in the context of historical pattern of spatiotemporal heterogeneity. Environ. Manage., 14, 629645.
[42]Quinn, J.M., Steele, G.L., Hickey, C.W. and Vickers, M.L., 1997. Land use effects on habitat, water quality, periphyton, and benthic invertebrates in Waikato, New Zealand, hill-country streams. N. Z. J. Mar. Freshwater Res., 28, 391397.
[43]Richards, C., Haro, R.J., Johnson, L.B. and Host, G.E., 1997. Catchment and reach-scale properties as indicators of macroinvertebrate species traits. Freshwater Biol., 37, 219230.
[44]Rott, E., 1991. Methodological aspects and perspectives in the use of periphyton for monitoring and protecting rivers. In: Whitton, B.A., Rott, E. and Friedrich, G. (eds.), Use of Algae for Monitoring Rivers, Institut für Botanik, University of Innsbruck, Austria, 916.
[45]Sponseller, R.A., Benfield, E.F. and Valett, H.M., 2001. Relationships between land use, spatial scale and stream macroinvertebrate communities. Freshwater Biol., 46, 14091424.
[46]StatSoft Inc., 2004. STATISTICA (data analysis software system), version 7. www.statsoft.com.
[47]Stevenson, R.J. and Pan, Y., 1999. Assessing ecological conditions in rivers and streams with diatoms. In: Stoermer, E.F. and Smol, J.P. (eds.), The Diatoms: Applications to the Environmental and Earth Sciences, Cambridge University Press, Cambridge, UK, 1140.
[48]Tang, T., Cai, Q. and Liu, J., 2006. Using epilithic diatom communities to assess ecological condition of Xiangxi River system. Environ. Monit. Assess., 112, 347361.
[49]Tonn, W.M., Magnuson, M.R. and Toivonen, J., 1990. Intercontinental comparison of small-lake fish assemblages: the balance between local and regional processes. Am. Nat., 136, 345375.
[50]Townsend, C.R., 1996. Concepts in river ecology: pattern and process in the catchment hierarchy. Arch. Hydrobiol. Suppl., 113, 321.
[51]Townsend, C.R., 2003. Individual, population, community, and ecosystem consequences of a fish invader in New Zealand streams. Conserv. Biol., 17, 1, 3847.
[52]Townsend, C.R. and Hildrew, A.G., 1994. Species traits in relation to a habitat templet for river systems. Freshwater Biol., 31, 265275.
[53]Ultsch, A., 1993. Self-organizing neural networks for visualization and classification. In: Opitz, B., Lausen, O. and Klar, R. (eds.), Information and Classification, Springer-Verlag, Berlin, 307313.
[54]US EPA, 2002. Biological Assessments and Criteria Crucial Components of Water Quality Programs, U.S. Environmental Protection Agency, Office of Water, EPA 822-F-02-006, Washington, DC.
[55]Vannote, R.L., Minshall, G.W., Cummins, K.W., Sedell, J.R. and Cushing, C.E., 1980. The river continuum concept. Can. J. Fish. Aquat. Sci., 37, 130137.
[56]Walley, W.J. and Hawkes, H.A., 1997. A computer-based development of the Biological Monitoring Working Party score system incorporating abundance rating, site type and indicator value. Water Res., 31, 201210.
[57]Watanabe, T., Asai, K. and Houki, A., 1986. Numerical estimation of organic pollution of flowing water by using the epilithic diatom assemblage – Diatom Assemblage Index (DAIpo). Sci. Total Environ., 55, 209218.
[58]Won, D.H., Jun, Y.C., Kwon, S.J., Hwang, S.J., Ahn, K.G. and Lee, J.W., 2006. Development of Korean saprobic index using benthic macroinvertebrates and its application to biological stream environment assessment. J. Korean Soc. Water Qual., 22, 768783 (in Korean with English summary).
[59]Zelinka, M. and Marvan, P., 1961. Zur Präzisierung der biologischen Klassifikation der Reinheit fließender Gewässer. Arch. Hydrobiologia, 57, 389407.

Keywords

Relationships between three major stream assemblages and their environmental factors in multiple spatial scales

  • Mi-Jung Bae (a1), Yongsu Kwon (a1), Soon-Jin Hwang (a2), Tae-Soo Chon (a3), Hyung-Jae Yang (a4), In-Sil Kwak (a5), Jung-Ho Park (a6), Soon-A Ham (a7) and Young-Seuk Park (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed