Skip to main content Accessibility help
×
Home
Hostname: page-component-78dcdb465f-fqvcn Total loading time: 0.241 Render date: 2021-04-18T19:01:12.919Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Mineral grains in caddisfly pupal cases and streambed sediments: assessing resource use and its limitation across various river types*

Published online by Cambridge University Press:  06 April 2011

Bernhard Statzner
Affiliation:
CNRS-Écologie des Hydrosystèmes Fluviaux, University of Lyon 1, 69622 Villeurbanne Cedex, France
Corresponding
Get access

Abstract

Typically, lotic caddisflies attach their mineral pupal cases to cobbles in riffles, where rapid flows facilitate respiration but also decrease case-building material availability through erosion. Effects of local grain availability on grain quantities in and architecture of (per capita grain size use) pupal cases should be more important in Resident Construction Workers (RCWs, building immediately before pupation with minerals collected near the pupation location) than in Itinerant Construction Workers (ICWs, building months before pupation with minerals collected distantly from the pupation location). I tested these hypotheses analyzing mineral grain sizes in pupal cases and streambed sediments of cobble habitats in riffles of five running water types (headwater to large river in different regions) at baseflow or exceptional droughts. When pupae were abundant, the data supported both hypotheses at the local scale of samples, as grain size use by RCWs (as a group) but not by ICWs increased across all sites with local grain availability and abundant taxa among the former responded with four types of case-architecture modifications to grain size shortage. The data also supported the idea that at larger scales such as river or habitat types, mineral grains may be a limited resource for caddisflies building pupal cases with them. These findings suggest that water currents in streams or near shores of lakes and oceans that erode finer mineral grains can create conflicts in resource requirements for invertebrates that build with locally occurring finer mineral grains and simultaneously need high oxygen renewal rates and coarse grains for attachment.

Type
Research Article
Copyright
© EDP Sciences, 2011

Access options

Get access to the full version of this content by using one of the access options below.

Footnotes

*

Dedicated to the memory of Bert Higler, who was an active and diversified Trichopterologist.

References

Abdoli, A., Pont, D. and Sagnes, P., 2005. Influence of female age, body size and environmental conditions on annual egg production of the bullhead. J. Fish Biol., 67, 13271341.CrossRefGoogle Scholar
Becker, G., 2001. Larval size, case construction and crawling velocity at different substratum roughness in three scraping caddis larvae. Arch. Hydrobiol., 151, 317334.CrossRefGoogle Scholar
Begon, M., Harper, J.L. and Townsend, C.R., 1986. Ecology, Blackwell, Oxford, 876 p.Google Scholar
Bohle, H.-W. and Fischer, M., 1983. Struktur und Entstehung der Larven- und Puppengehäuse einiger Glossosomatidae und Rhyacophilidae, inbesondere bei Synagapetus iridipennis (Trichoptera: Rhyacophiloidea). Entomol. Gener., 9, 1734.CrossRefGoogle Scholar
Buitenhuis, E.T., Timmermans, K.R. and De Baar, H.J.W., 2003. Zinc-bicarbonate colimitation of Emiliania huxleyi. Limnol. Oceanogr., 48, 15751582.CrossRefGoogle Scholar
Céréghino, R., Boutet, T. and Lavandier, P., 1997. Abundance, biomass, life history and growth of six Trichoptera species under natural and hydropeaking conditions with hypolimnetic release in a Pyrenean stream. Arch. Hydrobiol., 138, 307328.Google Scholar
De Moor, F.C., 2005. Variation in case construction of Trichoptera larvae in southern Africa. Proc. 11th Int. Symp. Trichopt., 2003, 107114.Google Scholar
Dudgeon, D., 1990. Functional significance of selection of particles and their use by aquatic animals in the construction of external structures. In: Wotton, R.S. (ed.), The biology of particles in aquatic systems, CRC, Boca Raton, FL, 263288.Google Scholar
Elliott, J.M., 1971. Upstream movements of benthic invertebrates in a lake district stream. J. Anim. Ecol., 40, 235252.CrossRefGoogle Scholar
González, M.A., Iglesias, J.C. and Cobo, F., 1989. Description de la larve et considérations sur l'habitat, la biologie et la répartition de Thremma tellae (Trichoptera: Uenoidea: Thremmatinae). Ann. Limnol., 25, 237241.CrossRefGoogle Scholar
Gorter, F.J., 1931. Köcherbauversuche an Trichopterenlarven. Z. Morph. Ökol. Tiere, 20, 443532.CrossRefGoogle Scholar
Gurnell, A., Surian, N. and Zanoni, L., 2009. Multi-thread river channels: a perspective on changing European alpine river systems. Aquat. Sci., 71, 253265.CrossRefGoogle Scholar
Haller, P.H., 1948. Morphologische, biologische und histologische Beiträge zur Kenntnis der Metamorphose der Trichopteren (Hydropsyche). Mitt. Schweiz. Entomol. Ges., 21, 301359.Google Scholar
Hanna, H.H., 1961. Selection of materials for case-building by larvae of caddis flies (Trichoptera). Proc. R. Entomol. Soc. Lond. (A), 36, 3747.Google Scholar
Hanquet, D., Legalle, M., Garbage, S. and Céréghino, R., 2004. Ontogenetic microhabitat shifts in stream invertebrates with different biological traits. Arch. Hydrobiol., 160, 329346.CrossRefGoogle Scholar
Hansell, M.H., 1973. Improvement and termination of house building in the caddis larva Lepidostoma hirtum Curtis. Behaviour, 46, 141153.CrossRefGoogle Scholar
Hansell, M.H., 1974. The house building of caddis larvae: a source of projects for schools. J. Biol. Educat., 8, 8898.CrossRefGoogle Scholar
Higler, B., 2005. De nederlandse kokerjufferlarven, KNNV Uitgeverij, Utrecht, 158 p.Google Scholar
Hildrew, A.G. and Edington, J.M., 1979. Factors facilitating the coexistence of hydropsychid caddis larvae (Trichoptera) in the same river system. J. Anim. Ecol., 48, 557576.CrossRefGoogle Scholar
Hynes, H.B.N., 1970. The ecology of running waters, Liverpool University Press, Liverpool, 555 p.
Ivol, J.-M., Guinand, B., Richoux, P. and Tachet, H., 1997. Longitudinal changes in Trichoptera and Coleoptera assemblages and environmental conditions in the Loire River (France). Arch. Hydrobiol., 138, 525557.Google Scholar
Jackson, J.K., McElravy, E.P. and Resh, V.H., 1999. Long-term movements of self-marked caddisfly larvae (Trichoptera: Sericostomatidae) in a California coastal mountain stream. Freshw. Biol., 42, 525536.CrossRefGoogle Scholar
Johnson, H. and Duijker, H., 1993. Atlas der französischen Weine (4th edn.), Hallwag, Bern, 279 p.Google Scholar
Lepneva, S.G., 1970. Larvae and pupae of Annulipalpia, Israel Program for Scientific Translations, Jerusalem, 638 p.Google Scholar
Lepneva, S.G., 1971. Larvae and pupae of Integripalpia, Israel Program for Scientific Translations, Jerusalem, 560 p.Google Scholar
Liebig, J., 1840. Die organische Chemie in ihrer Anwendung auf Agricultur und Physiologie, Vieweg, Braunschweig, 353 p.
Mackay, R.J., 1977. Behavior of Pycnopsyche (Trichoptera: Limnephilidae) on mineral substrates in laboratory streams. Ecology, 58, 191195.CrossRefGoogle Scholar
Mackay, R.J. and Wiggins, G.B., 1979. Ecological diversity in Trichoptera. Annu. Rev. Entomol., 24, 185208.CrossRefGoogle Scholar
Malicky, H., 1983. Atlas of European Trichoptera, Junk, The Hague, 298 p.Google Scholar
Malicky, H., 2000. Which caddis larvae construct a new case for pupation? Braueria, 27, 1920.Google Scholar
Mangelsdorf, J. and Scheurmann, K., 1980. Flußmorphologie, Oldenbourg, München, 262 p.Google Scholar
Mogel, R., Rieder, N. and Statzner, B., 1985. Ein Gerät zur Freilandbeobachtung des nächtlichen Verhaltens von benthischen Bachtieren, mit Befunden aus der Gattung Hydropsyche (Trichoptera, Insecta). Carolinea, 42, 121128.Google Scholar
Neu, P.J. and Tobias, W., 2004. The identification of the German Hydropsychidae (Insecta: Trichoptera). Lauterbornia, 51, 168.Google Scholar
Newbury, R.W. and Gaboury, M.N., 1993. Stream analysis and fish habitat design, Newbury Hydraulics, Gibsons, BC, 262 p.
Nogueira, A.J.A., Baird, D.J. and Soares, A.M.V.M., 2004. Testing physiologically-based resource allocation rules in laboratory experiments with Daphnia magna Straus. Ann. Limnol. - Int. J. Lim., 40, 257267.CrossRefGoogle Scholar
Okano, J., Kikuchi, E. and Sasaki, O., 2010. The role of particle surface texture on case material selection and silk lining in caddis flies. Behav. Ecol., 21, 826835.CrossRefGoogle Scholar
Otto, C., 2000. Cost and benefit from shield cases in caddis larvae. Hydrobiologia, 436, 3540.CrossRefGoogle Scholar
Otto, C. and Johansson, A., 1995. Why do some caddis larvae in running waters construct heavy, bulky cases? Anim. Behav., 49, 473478.CrossRefGoogle Scholar
Pereira, J.L. and Gonçalves, F., 2008. Daphnia fitness over a food gradient: is body size the single trait predicting exploitative ability? Ann. Limnol. - Int. J. Lim., 44, 169179.CrossRefGoogle Scholar
Pierrot, J.-P., 1984. Étude expérimentale de la niche écologique larvaire de quelques espèces d'Hydropsyche (Trichoptera, Hydropsychidae), Ph.D. thesis, University of Lyon 1, 251 p.
Podgornyi, K.A. and Nepomnyashchikh, V.A., 1999. Effects of behavioral variability on optimization of caddis fly (Chaetopteryx villosa) larvae behavior. Adv. Curr. Biol., 119, 218222 (in Russian, with English abstract).Google Scholar
Rost, B., Riebesell, U., Burkhardt, S. and Sültemeyer, D., 2003. Carbon acquisition of bloom-forming marine phytoplankton. Limnol. Oceanogr., 48, 5567.CrossRefGoogle Scholar
Sangpradub, N., Giller, P.S. and O'Connor, J.P., 1999. Life history patterns of stream-dwelling caddis. Arch. Hydrobiol., 146, 471493.CrossRefGoogle Scholar
Sattler, W., 1958. Beiträge zur Kenntnis von Lebensweise und Körperbau der Larve und Puppe von Hydropsyche Pict. (Trichoptera) mit besonderer Berücksichtigung des Netzbaues. Z. Morph. Ökol. Tiere, 47, 115192.CrossRefGoogle Scholar
Schuhmacher, H., 1970. Untersuchungen zur Taxonomie, Biologie und Ökologie einiger Köcherfliegenarten der Gattung Hydropsyche Pict. (Insecta, Trichoptera). Int. Rev. Ges. Hydrobiol., 55, 511557.CrossRefGoogle Scholar
Semper, K., 1880. Die natürlichen Existenzbedingungen der Thiere, Volumes 1 & 2, Brockhaus, Leipzig, 299 & 296 p.
Smart, K., 1976. A progress report on the building motivation in the caddis larva, Lepidostoma hirtum. Proc. 1st Int. Symp. Trichopt., 1974, 185186.CrossRefGoogle Scholar
Solem, J.O. and Gullefors, B., 1996. Trichoptera, caddisflies. In: Nilsson, A. (ed.), Aquatic insects of North Europe, Vol. 1, Apollo, Stenstrup, 223255.Google Scholar
Statzner, B. and Bretschko, G., 1998. Net-building of a caddis fly (Hydropsyche siltalai) in a French stream: relations with larval density and physical conditions. Arch. Hydrobiol., 144, 87102.CrossRefGoogle Scholar
Statzner, B. and Mondy, N., 2009. Variation of colour patterns in larval Hydropsyche (Trichoptera): implications for species identifications and the phylogeny of the genus. Limnologica, 39, 177183.CrossRefGoogle Scholar
Statzner, B., Kohmann, F. and Hildrew, A.G., 1991. Calibration of FST-hemispheres against bottom shear stress in a laboratory flume. Freshw. Biol., 26, 227231.CrossRefGoogle Scholar
Statzner, B., Arens, M.-F., Champagne, J.-Y., Morel, R. and Herouin, E., 1999. Silk-producing stream insects and gravel erosion: significant biological effects on critical shear stress. Water Resour. Res., 35, 34953506.CrossRefGoogle Scholar
Statzner, B., Mérigoux, S. and Leichtfried, M., 2005. Mineral grains in caddisfly pupal cases and streambed sediments: resource use and its limitation through conflicting resource requirements. Limnol. Oceanogr., 50, 713721.CrossRefGoogle Scholar
Statzner, B., Dolédec, O. and Sagnes, P., 2009. Recent low-cost technologies to analyse physical properties of cases and tubes built by aquatic animals. Int. Rev. Hydrobiol., 94, 625644.CrossRefGoogle Scholar
Statzner, B., Douady, C.J., Konecny, L. and Dolédec, S., 2010. Unravelling phylogenetic relationships among regionally co-existing species: Hydropsyche species (Trichoptera: Hydropsychidae) in the Loire River. Zootaxa, 2556, 5168.Google Scholar
Stevens, D.J., Hansell, M.H., Freel, J.A. and Monaghan, P., 1999. Developmental trade-offs in caddis flies: increased investment in larval defence alters adult resource allocation. Proc. R. Soc. Lond. B, 266, 10491054.CrossRefGoogle Scholar
Stevens, D.J., Hansell, M.H. and P., Monaghan, 2000. Developmental trade-offs and life histories: strategic allocation of resources in caddis flies. Proc. R. Soc. Lond. B, 267, 15111515.CrossRefGoogle ScholarPubMed
Stuart, A.E. and Currie, D.C., 2001. Using caddisfly (Trichoptera) case-building behaviour in higher level phylogeny reconstruction. Can. J. Zool., 79, 18421854.CrossRefGoogle Scholar
Takao, A., Kawaguchi, Y., Minagawa, T., Kayaba, Y. and Morimoto, Y., 2008. The relationships between benthic macroinvertebrates and biotic and abiotic environmental characteristics downstream of the Yahagi dam, Central Japan, and the state change caused by inflow from a tributary. River Res. Applic., 24, 580597.CrossRefGoogle Scholar
Tolkamp, H.H., 1980. Organism-substrate relationships in lowland streams. Agric. Res. Rep. Wageningen, 907, 1211.Google Scholar
Tomer, M.D., Dosskey, M.G., Burkart, M.R., James, D.E., Helmers, M.J. and Eisenhauer, D.E., 2009. Methods to prioritize placement of riparian buffers for improved water quality. Agroforest. Syst., 75, 1725.CrossRefGoogle Scholar
Verneaux, J., 1973. Cours d'eau de Franche-Comté (massif du Jura), Doct. Sci. Nat. dissertation, University of Besançon, Besançon, 256 p.
Waringer, J. and Graf, W., 1997. Atlas der österreichischen Köcherfliegenlarven unter Einschluß der angrenzenden Gebiete, Facultas, Wien, 286 p.
Wiggins, G.B., 2001. Construction behaviour for new pupal cases by case-making caddis larvae: further comment (Trichoptera: Integripalpia). Braueria, 28, 79.Google Scholar
Wiggins, G.B., 2004. Caddisflies: the underwater architects, University of Toronto Press, Toronto, 292 p.Google Scholar
Williams, D.D. and Feltmate, B.W., 1992. Aquatic insects, CAB International, Wallingford, 358 p.Google Scholar
Williams, D.D., Tavares, A.F. and Bryant, E., 1987. Respiratory device or camouflage? – A case for the caddisfly. Oikos, 50, 4252.CrossRefGoogle Scholar
Zwick, P., 1998. Micrasema longulum (Trichoptera: Brachycentridae) builds a special pupation chamber. Ann. Limnol. - Int. J. Lim., 34, 437444.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 37 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 18th April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Mineral grains in caddisfly pupal cases and streambed sediments: assessing resource use and its limitation across various river types*
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Mineral grains in caddisfly pupal cases and streambed sediments: assessing resource use and its limitation across various river types*
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Mineral grains in caddisfly pupal cases and streambed sediments: assessing resource use and its limitation across various river types*
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *