Skip to main content Accessibility help

Sensitivity of the Welfare Quality® broiler chicken protocol to differences between intensively reared indoor flocks: which factors explain overall classification?

  • S. Buijs (a1), B. Ampe (a1) and F. A. M. Tuyttens (a1)


There is a large demand for holistic welfare assessment systems that result in a singular balanced summary of welfare. The Welfare Quality® (WQ) broiler protocol summarizes 18 welfare measures into four principles (‘good feeding’, ‘good housing’, ‘good health’ and ‘appropriate behaviour’), which are then integrated into one overall category (‘excellent’, ‘enhanced’, ‘acceptable’ or ‘not classified’). But the protocol is time consuming which hampers implementation. Furthermore, WQ’s aim to assess animal welfare in a wide range of husbandry systems may decrease its ability to discriminate between flocks from the same system. We applied the protocol in the context of intensive indoor rearing to assess whether it discriminated sufficiently between flocks, could be shortened without losing essential information, and provided a balanced summary of welfare. The vast majority of the flocks (88%) received the same overall classification (acceptable) whilst all other flocks received an adjacent classification (enhanced), suggesting poor discriminative capacity. For 95% of the flocks overall classification was explained by two measures only (‘drinker space’ and ‘stocking density’). A system based on these two measures would reduce assessment time from 3.5 h to a few minutes. However, both measures’ validity can be questioned as they are risk factors for poor welfare rather than animal-based outcome measures and they suffer from methodological weaknesses. Furthermore, the possibility for such an extreme simplification raises doubts on whether the overall classification reflects a balanced summary of different welfare aspects. In line with this, overall classification was not affected by replacing single measures within the ‘good health’ and ‘appropriate behaviour’ principles with realistically attainable minima or maxima for intensively reared flocks. Even replacing either of these two principles entirely with their realistically obtainable minimum or maximum did not affect classification. Such insensitivity to change may discourage attempts to improve the welfare of intensively reared flocks when assessments are made based on the overall classification. This calls for an adjustment of the classification system, which is currently being developed by the Welfare Quality Network.


Corresponding author


Hide All
Arnould, C and Colin, L 2009. Evaluation of broiler welfare in commercial rearing systems. First French results from the European project Welfare Quality®. Proceedings of the 8th Avian French Research Days, 25 to 26 March 2009, St. Malo, France, p. 3.
Bassler, A, Arnould, C, Butterworth, A, Colin, L, De Jong, I, Ferrante, V, Ferrari, P, Haslam, S, Wemelsfelder, F and Blokhuis, HJ 2013. Potential risk factors associated with contact dermatitis, lameness, negative emotional state, and fear of humans in broiler chicken flocks. Poultry Science 92, 28112826.
Blokhuis, HJ, Veissier, I, Miele, M and Jones, B 2010. The Welfare Quality® project and beyond: safeguarding farm animal well-being. Acta Agriculturae Scandinavica Section A-Animal Science 60, 129140.
Bradshaw, RH, Kirkden, RD and Broom, DM 2002. A review of the aetiology and pathology of leg weakness in broilers in relation to welfare. Avian and Poultry Biology Reviews 13, 45103.
Butterworth, A, Weeks, CA, Crea, PR and Kestin, SC 2002. Dehydration and lameness in a broiler flock. Animal Welfare 11, 8994.
De Jong, IC, Hindle, VA, Butterworth, A, Engel, B, Ferrari, P, Gunnink, H, Perez Moya, T, Tuyttens, FAM and Van Reenen, CG 2015. Simplifying the Welfare Quality® assessment protocol for broiler chicken welfare. Animal 10, 117127.
De Vries, M, Bokkers, EAM, Van Schaik, G, Botreau, R, Engel, B, Dijkstra, T and De Boer, IJM 2013. Evaluating results of the Welfare Quality multi-criteria evaluation model for classification of dairy cattle at the herd level. Journal of Dairy Science 96, 62646273.
Feddes, JJR, Emmanual, EJ and Zuidhof, MJ 2002. Broiler performance, bodyweight variance, feed and water intake, and carcass quality at different stocking densities. Poultry Science 81, 774779.
Heath, CAE, Browne, WJ, Mullan, S and Main, DCJ 2014. Navigating the iceberg: reducing the number of parameters within the Welfare Quality® assessment protocol for dairy cows. Animal 8, 19781986.
R Core Team 2013. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
Tuyttens, FAM, Vanhonacker, F and Verbeke, W 2014. Broiler production in Flanders, Belgium: current situation and producers’ opinions about animal welfare. World’s Poultry Science Journal 70, 343354.
Vanderhasselt, RF, Goethals, K, Buijs, S, Federici, JF, Sans, ECO, Molento, CFM, Duchateau, L and Tuyttens, FAM 2014. Performance of an animal-based test of thirst in commercial broiler chicken farms. Poultry Science 93, 13271336.
Vanhonacker, F, Tuyttens, FAM and Verbeke, W 2016. Belgian citizens‘ and broiler producers‘ perceptions of broiler chicken welfare in Belgium versus Brazil. Poultry Science 95, 15551563.
Veissier, I, Jensen, KK, Botreau, R and Sandøe, P 2011. Highlighting ethical decisions underlying the scoring of animal welfare in the Welfare Quality® scheme. Animal Welfare 20, 89101.
Welfare Quality (WQ) 2009. The Welfare Quality® assessment protocol for poultry (broilers, laying hens). The Welfare Quality® Consortium, Lelystad, the Netherlands.



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed