Skip to main content Accessibility help
×
Home

Review: Precision livestock farming: building ‘digital representations’ to bring the animals closer to the farmer

  • T. Norton (a1), C. Chen (a1), M. L. V. Larsen (a1) (a2) and D. Berckmans (a1) (a3)

Abstract

Economic pressures continue to mount on modern-day livestock farmers, forcing them to increase herds sizes in order to be commercially viable. The natural consequence of this is to drive the farmer and the animal further apart. However, closer attention to the animal not only positively impacts animal welfare and health but can also increase the capacity of the farmer to achieve a more sustainable production. State-of-the-art precision livestock farming (PLF) technology is one such means of bringing the animals closer to the farmer in the facing of expanding systems. Contrary to some current opinions, it can offer an alternative philosophy to ‘farming by numbers’. This review addresses the key technology-oriented approaches to monitor animals and demonstrates how image and sound analyses can be used to build ‘digital representations of animals by giving an overview of some of the core concepts of PLF tool development and value discovery during PLF implementation. The key to developing such a representation is by measuring important behaviours and events in the livestock buildings. The application of image and sound can realise more advanced applications and has enormous potential in the industry. In the end, the importance lies in the accuracy of the developed PLF applications in the commercial farming system as this will also make the farmer embrace the technological development and ensure progress within the PLF field in favour of the livestock animals and their well-being.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Review: Precision livestock farming: building ‘digital representations’ to bring the animals closer to the farmer
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Review: Precision livestock farming: building ‘digital representations’ to bring the animals closer to the farmer
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Review: Precision livestock farming: building ‘digital representations’ to bring the animals closer to the farmer
      Available formats
      ×

Copyright

Corresponding author

References

Hide All
Aerts, JM, Norton, T and Berckmans, D 2019. Integration of Bioresponses in management of biological processes. Course in 1st year of Masterprogramme Biosystems Engineer, Katholieke Universiteit Leuven, pp. 360, started in 2006.
Ahrendt, P, Gregersen, T and Karstoft, H 2011. Development of a real-time computer vision system for tracking loose-housed pigs. Computers and Electronics in Agriculture 76, 169174.
Alfredsen, JA, Holand, B, Solvang-Garten, T and Uglem, I 2008. Feeding activity and opercular pressure transients in Atlantic salmon (Salmo salar L.): application to feeding management in fish farming. Hydrobiologia 582, 199207.
Andersen, HM-L, Dybkjær, L and Herskin, MS 2014. Growing pigs’ drinking behaviour: number of visits, duration, water intake and diurnal variation. Animal 8, 18811888.
Aydin, A, Bahr, C, Viazzi, S, Exadaktylos, V, Buyse, J and Berckmans, D 2014. A novel method to automatically measure the feed intake of broiler chickens by sound technology. Computers and Electronics in Agriculture 101, 1723.
Aydin, A, Cangar, O, Ozcan, SE, Bahr, C and Berckmans, D 2010. Application of a fully automatic analysis tool to assess the activity of broiler chickens with different gait scores. Computers and Electronics in Agriculture 73, 194199.
Aydin, A, Pluk, A, Leroy, T, Berckmans, D and Bahr, C 2013. Automatic identification of activity and spatial use of broiler chickens with different gait scores. Transactions of the ASABE 56, 11231132.
Benjamin, M and Yik, S 2019. Precision livestock farming in swine welfare: a review for swine practitioners. Animals 9, 133.
Berckmans, D 2006. Automatic on-line monitoring of animals by precision livestock farming. Livestock Production and Society, 287294.
Berckmans, D 2013. Basic principles of PLF: gold standard, labelling and field data. In 6th European Conference on Precision Livestock Farming (EC-PLF 2013), 10–12 September 2013, Leuven, Belgium.
Berckmans, D 2014. Precision livestock farming technologies for welfare management in intensive livestock systems. Scientific and Technical Review of the Office International des Epizooties 33, 189196.
Berckmans, D, Hemeryck, M, Berckmans, D, Vranken, E and van Waterschoot, T 2015. Animal sound… talks! real-time sound analysis for health monitoring in livestock. In Proceedings of the International Symposium on Animal Environment and Welfare, 23–26 October 2015, Chongqing, China, pp. 215222.
Blokhuis, H, Veissier, I, Miele, M and Jones, B 2019. Safeguarding farm animal welfare. In Sustainability certification schemes in the agricultural and natural resource sectors: outcomes for society and the environment (ed. Vogt, M), pp. 137154. Routledge, Taylor and Francis Group, London UK and New York, USA.
Bos, JM, Bovenkerk, B, Feindt, PH and Van Dam, YK 2018. The quantified animal: precision livestock farming and the ethical implications of objectification. Food Ethics 2, 7792.
Bracke, MB, Metz, JH, Spruijt, BM and Schouten, WG 2002. Decision support system for overall welfare assessment in pregnant sows B: validation by expert opinion. Journal of Animal Science 80, 18351845.
Bright, A 2008. Vocalisations and acoustic parameters of flock noise from feather pecking and non-feather pecking laying flocks. British Poultry Science 49, 241249.
Cangar, O, Leroy, T, Guarino, M, Vranken, E, Fallon, R, Lenehan, J, Mee, J and Berckmans, D 2008. Automatic real-time monitoring of locomotion and posture behaviour of pregnant cows prior to calving using online image analysis. Computers and Electronics in Agriculture 64, 5360.
Carpentier, L, Vranken, E, Berckmans, D, Paeshuyse, J and Norton, T 2019. Development of sound-based poultry health monitoring tool for automated sneeze detection. Computers and Electronics in Agriculture 162, 573581.
Chan, WY, Cloutier, S and Newberry, RC 2011. Barking pigs: differences in acoustic morphology predict juvenile responses to alarm calls. Animal Behaviour 82, 767774.
Chen, C, Zhu, WX, Ma, CH, Guo, YZ, Huang, WJ and Ruan, CZ 2017. Image motion feature extraction for recognition of aggressive behaviours among group-housed pigs. Computers and Electronics in Agriculture 142, 380387.
Cordeiro, AFDS, Nääs, IDA, da Silva Leitão, F, de Almeida, AC and de Moura, DJ 2018. Use of vocalisation to identify sex, age, and distress in pig production. Biosystems Engineering 173, 5763.
Darr, M and Epperson, W 2009. Embedded sensor technology for real time determination of animal lying time. Computers and Electronics in Agriculture 66, 106111.
Dawkins, MS, Russell, C, Merelie, K and Roberts, SJ 2013. In search of the behavioural correlates of optical flow patterns in the automated assessment of broiler chicken welfare. Applied Animal Behaviour Science 145, 4450.
D’Eath, RB and Turner, SP 2009. The natural behaviour of the pig. In The welfare of pigs (ed. Marchant-Forde, JN), pp. 1345. Springer, Dordrecht, Netherlands.
Diana, A, Carpentier, L, Piette, D, Boyle, LA, Berckmans, D and Norton, T 2019. An ethogram of biter and bitten pigs during an ear biting event: first step in the development of a precision livestock farming tool. Applied Animal Behaviour Science 215, 2636.
Dominiak, KN, Hindsborg, J, Perdersen, LJ and Kristensen, AR 2019. Spatial modeling of pigs’ drinking patterns as an alarm reducing method II. Application of a multivariate dynamic linear model. Computers and Electronics in Agriculture 161, 92103.
Domun, Y, Pedersen, LJ, White, D, Adeyemi, O and Norton, T 2019. Learning patterns from time-series data to discriminate predictions of tail-biting, fouling and diarrhoea in pigs. Computers and Electronics in Agriculture 163, 104878.
Exadaktylos, V, Silva, M, Aerts, JM, Taylor, CJ and Berckmans, D 2008. Real-time recognition of sick pig cough sounds. Computers and Electronics in Agriculture 63, 207214.
Faucitano, L 2001. Causes of skin damage to pig carcasses. Canadian Journal of Animal Science 81, 3945.
Feltenstein, MW, Ford, NG, Freeman, KB and Sufka, KJ 2002. Dissociation of stress behaviors in the chick social-separation-stress procedure. Physiology & Behavior 75, 675679.
Fernández, AP, Norton, T, Tullo, E, van Hertem, T, Youssef, A, Exadaktylos, V, Vranken, E, Guarino, M and Berckmans, D 2018. Real-time monitoring of broiler flock’s welfare status using camera-based technology. Biosystems Engineering 173, 103114.
Ferrari, S, Silva, M, Guarino, M, Aerts, JM and Berckmans, D 2008. Cough sound analysis to identify respiratory infection in pigs. Computers and Electronics in Agriculture 64, 318325.
Fontana, I, Tullo, E, Butterworth, A and Guarino, M 2015. An innovative approach to predict the growth in intensive poultry farming. Computers and Electronics in Agriculture 119, 178183.
Frost, AR, French, AP, Tillett, RD, Pridmore, TP and Welch, SK 2004. A vision guided robot for tracking a live, loosely constrained pig. Computers and Electronics in Agriculture 44, 93106.
Føre, M, Alfredsen, JA and Gronningsater, A 2011. Development of two telemetry-based systems for monitoring the feeding behaviour of Atlantic salmon (Salmo salar L.) in aquaculture sea-cages. Computers and Electronics in Agriculture 76, 240251.
Føre, M, Frank, K, Norton, T, Svendsen, E, Alfredsen, JA, Dempster, T, Eguiraun, H, Watson, W, Stahl, A, Sunde, LM, Schellewald, C, Skøien, K, Alver, MO and Berckmans, D 2018. Precision fish farming: a new framework to improve production in aquaculture. Biosystems Engineering 173, 176193.
Gronskyte, R, Clemmensen, LH, Hviid, MS and Kulahci, M 2015. Pig herd monitoring and undesirable tripping and stepping prevention. Computers and Electronics in Agriculture 119, 5160.
Guo, YZ, Zhu, WX, Jiao, PP and Chen, JL 2014. Foreground detection of group-housed pigs based on the combination of mixture of Gaussians using prediction mechanism and threshold segmentation. Biosystems Engineering 125, 98104.
Guo, Y, Zhu, W, Jiao, P, Ma, C and Yang, J 2015. Multi-object extraction from topview group-housed pig images based on adaptive partitioning multilevel thresholding segmentation. Biosystems Engineering 135, 5460.
Halachmi, I and Guarino, M 2016. Precision livestock farming: a ‘per animal’ approach using advanced monitoring technologies. Animal 10, 14821483.
Halachmi, I, Guarino, M, Bewley, J and Pastell, M 2019. Smart animal agriculture: application of real-time sensors to improve animal well-being and production. Annual Review of Animal Biosciences 7, 403425.
Haslam, SM, Knowles, TG, Brown, SN, Wilkins, LJ, Kestin, SC, Warriss, PD and Nicol, CJ 2007. Factors affecting the prevalence of foot pad dermatitis, hock burn and breast burn in broiler chicken. British Poultry Science 48, 264275.
Huang, WJ, Zhu, WX, Ma, CH, Guo, YZ and Chen, C 2018. Identification of group-housed pigs based on Gabor and Local Binary Pattern features. Biosystesms Engineering 166, 90100.
Jensen, DB, Toft, N and Kristensen, AR 2017. A multivariate dynamic linear model for early warnings of diarrhea and pen fouling in slaughter pigs. Computers and Electronics in Agriculture 135, 5162.
Kashiha, M, Bahr, C, Haredasht Amirpour, S, Ott, S, Moons, C, Niewold, TA, Odberg, FO and Berckmans, D 2013a. The automatic monitoring of pigs water use by cameras. Computers and Electronics in Agriculture 90, 164169.
Kashiha, M, Bahr, C, Ott, S, Moons, CP, Niewold, TA, Ödberg, FO and Berckmans, D 2013b. Automatic identification of marked pigs in a pen using image pattern recognition. Computers and electronics in agriculture 93, 111120.
Larsen, MLV, Pedersen, LJ and Jensen, DB 2019. Prediction of tail biting events in finisher pigs from automatically recorded sensor data. Animals 9, 458.
Lu, MZ, Xiong, YJ, Li, KQ, Liu, LS, Yan, L, Ding, YQ, Lin, XZ, Yang, XJ and Shen, MX 2016. An automatic splitting method for the adhesive piglets’ gray scale image based on the ellipse shape feature. Computers and Electronics in Agriculture 120, 5362.
Madsen, TN, Andersen, S and Kristensen, AR 2005. Modelling the drinking patterns of young pigs using a state space model. Computers and Electronics in Agriculture 48, 3961.
Madsen, TN and Kristensen, AR 2005. A model for monitoring the condition of young pigs by their drinking behaviour. Computers and Electronics in Agriculture 48, 138154
Maselyne, J, Adriaens, I, Huybrechts, T and De Ketelaere, B 2016. Measuring the drinking behaviour of individual pigs housed in group using radio frequency identification (RFID). Animal 10, 15571566.
Mollah, MBR, Hasan, MA, Salam, MA and Ali, MA 2010. Digital image analysis to estimate the live weight of broiler. Computers and Electronics in Agriculture 72, 4852.
Moura, DJD, Nääs, IDA, Alves, ECDS, Carvalho, TMRD, Vale, MMD and Lima, KAOD (2008). Noise analysis to evaluate chick thermal comfort. Scientia Agricola 65, 438443.
Nasirahmadi, A, Hensel, O, Edwards, SA and Sturm, B 2016. Automatic detection of mounting behaviours among pigs using image analysis. Computers and Electronics in Agriculture 124, 295302.
Nasirahmadi, A, Richter, U, Hensel, O, Edwards, S and Sturm, B 2015. Using machine vision for investigation of changes in pig group lying patterns. Computers and Electronics in Agriculture 119, 184190.
Newberry, RC, Wood-Gush, DGM and Hall, JW 1988. Playful behaviour of piglets. Behavioural Processes 17, 205216.
Oczak, M, Ismayilova, G, Costa, A, Viazzi, S, Sonoda, LT, Fels, M, Bahr, C, Hartung, J, Guarino, M, Berckmans, M and Vranken, E 2013. Analysis of aggressive behaviours of pigs by automatic video recordings. Computers and Electronics in Agriculture 99, 209217.
Oczak, M, Viazzi, S, Ismayilova, G, Sonoda, LT, Roulston, N, Fels, M, Bahr, C, Hartung, J, Guarino, M, Berckmans, D and Vranken, E 2014. Classification of aggressive behaviour in pigs by activity index and multilayer feed forward neural network. Biosystems Engineering 119, 8997.
Oppedal, F, Dempster, T and Stien, LH 2011. Environmental drivers of Atlantic salmon behaviour in sea-cages: a review. Aquaculture 311, 118.
Schofield, CP, Marchant, JA, White, RP, Brandl, N and Wilson, M 1999. Monitoring pig growth using a prototype imaging system. Journal of Agricultural Engineering Research 72, 205210.
Shao, B and Xin, H 2008. A real-time computer vision assessment and control of thermal comfort for group-housed pigs. Computers and Electronics in Agriculture 62, 1521.
Stevenson, P 2017. Precision livestock farming: could it drive the livestock sector in the wrong direction. In Proceedings of the 8th European Conference of Precision Livestock Farming, EC-PLF 2017, September 12–14, 2017, Nantes, France.
Terrasson, G, Llaria, A, Marra, A & Voaden, S 2016. Accelerometer based solution for precision livestock farming: geolocation enhancement and animal activity identification. IOP Conference Series: Materials Science and Engineering 138, 012004.
Tullo, E, Finzi, A and Guarino, M 2019. Environmental impact of livestock farming and precision livestock farming as a mitigation strategy. Science of the Total Environment, 650, 27512760.
Vandermeulen, J, Bahr, C, Tullo, E, Fontana, I, Ott, S, Kashiha, M, Guarino, M, Moons, CPH, Tuyttens, FAM, Niewold, TA and Berckmans, D 2015. Discerning pig screams in production environments. PLoS ONE 10, e0123111.
van der Stuyft, E, Schofield, CP, Randall, JM, Wambacq, P and Goedseels, V 1991. Development and application of computer vision systems for use in livestock production. Computers and Electronics in Agriculture 6, 243265.
van Evert, FK, Fountas, S, Jakovetic, D, Crnojevic, V, Travlos, I and Kempenaar, C 2017. Big data for weed control and crop protection. Weed Research 57, 218233.
van Hirtum, A, Aerts, JM, Berckmans, D, Moreaux, B and Gustin, P 1999. On-line cough recognizer system. The Journal of the Acoustical Society of America 106, 21912191.
van Hirtum, A and Berckmans, D 2002. Assessing the sound of cough towards vocality. Medical Engineering & Physics 24, 535540.
van Hirtum, A and Berckmans, D 2003. Fuzzy approach for improved recognition of citric acid induced piglet coughing from continuous registration. Journal of Sound Vibration 266, 677686.
Viazzi, S, Ismayilova, G, Oczak, M, Sonoda, LT, Fels, M, Guarino, M, Vranken, E, Hartung, J, Bahr, C and Berckmans, D 2014. Image feature extraction for classification of aggressive interactions among pigs. Computers and Electronics in Agriculture 104, 5762.
Von Borell, E, Bünger, B, Schmidt, T and Horn, T 2009. Vocal-type classification as a tool to identify stress in piglets under on-farm conditions. Animal Welfare 18, 407416.
Werkheiser, I 2018. Precision livestock farming and farmers’ duties to livestock. Journal of Agricultural and Environmental Ethics 31, 181195.
Wu, JH, Tillett, R, McFarlane, N, Ju, XY, Siebert, JP and Schofield, P 2004. Extracting the three- dimensional shape of live pigs using stereo photogrammetry. Computers and Electronics in Agriculture 44, 203222.
Zhao, J, Gu, ZB, Shi, MM, Lu, HD, Li, JP, Shen, MW, Ye, ZY and Zhu, SM 2016. Spatial behavioural characteristics and statistics-based kinetic energy modeling in special behaviours detection of a shoal of fish in a recirculating aquaculture system. Computers and Electronics in Agriculture 127, 271280.
Zimmerman, PH, Koene, P and van Hooff, JA 2000. The vocal expression of feeding motivation and frustration in the domestic laying hen, Gallus gallus domesticus . Applied Animal Behaviour Science 69, 265273.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed