Bobe, G, Young, JW and Beitz, DC 2004. Invited review: Pathology, etiology, prevention and treatment of fatty liver in dairy cows. Journal of Dairy Science 87, 3105–3124.
Bradford, BJ, Yuan, K, Farney, JK, Mamedova, LK and Carpenter, AJ 2015. Invited review: Inflammation during the transition to lactation: new adventures with an old flame. Journal of Dairy Science 98, 6631–6650.
Broderick, GA and Clayton, MK 1997. A statistical evaluation of animal and nutritional factors influencing concentrations of milk urea nitrogen. Journal of Dairy Science 80, 2964–2971.
Bruckmaier, RM and Gross, JJ 2017. Lactational challenges in transition dairy cows. Animal Production Science 57, 1471–1481.
Brunner, N, Groeger, S, Canelas Raposo, J, Bruckmaier, RM and Gross, JJ 2019. Prevalence of subclinical ketosis and production diseases in dairy cows in Central and South America, Africa, Asia, Australia and New Zealand, and Eastern Europe. Translational Animal Science 3, 19–27.
Chapinal, N, Carson, M, Duffield, TF, Capel, M, Godden, S, Overton, M, Santos, JE and LeBlanc, SJ 2011. The association of serum metabolites with clinical disease during the transition period. Journal of Dairy Science 94, 4897–4903.
De Marchi, M, Bittante, G, Dal Zotto, R, Dalvit, C and Cassandro, M 2008. Effect of Holstein Friesian and Brown Swiss breeds on quality of milk and cheese. Journal of Dairy Science 91, 4092–4102.
De Marchi, M, Toffanin, V, Cassandro, M and Penasa, M 2014. Invited review: Mid-infrared spectroscopy as phenotyping tool for milk traits. Journal of Dairy Science 97, 1171–1186.
Denis-Robichaud, J, Dubuc, J, Lefebvre, D and DesCôteaux, L 2014. Accuracy of milk ketone bodies from flow-injection analysis for the diagnosis of hyperketonemia in dairy cows. Journal of Dairy Science 97, 3364–3370.
de Roos, AP, van den Bijgaart, HJ, Hørlyk, J and de Jong, G 2007. Screening for subclinical ketosis in dairy cattle by Fourier transform infrared spectrometry. Journal of Dairy Science 90, 1761–1766.
Duffield, TF, Lissemore, KD, McBride, BW and Leslie, KE 2009. Impact of hyperketonemia in early lactation dairy cows on health and production. Journal of Dairy Science 92, 571–580.
Geishauser, T, Leslie, K, Tenhag, J and Bashiri, A 2000. Evaluation of eight cow-side ketone tests in milk for detection of subclinical ketosis in dairy cows. Journal of Dairy Science 83, 296–299.
Gottardo, P, Penasa, M, Righi, F, Lopez-Villalobos, N, Cassandro, M and De Marchi, M 2017. Fatty acid composition of milk from Holstein-Friesian, Brown Swiss, Simmental and Alpine Grey cows predicted by mid-infrared spectroscopy. Italian Journal of Animal Science 16, 380–389.
Goulden, JDS 1964. Analysis of milk by infra-red absorption. Journal of Dairy Research 31, 273–284.
Grelet, C, Bastin, C, Gelé, M, Davière, JB, Johan, M, Werner, A, Reding, R, Fernandez Pierna, JA, Colinet, FG, Dardenne, P, Gengler, N, Soyeurt, H and Dehareng, F 2016. Development of Fourier transform mid-infrared calibrations to predict acetone, β-hydroxybutyrate, and citrate contents in bovine milk through a European dairy network. Journal of Dairy Science 99, 4816–4825.
Griinari, JM, Dwyer, DA, McGuire, MA, Bauman, DE, Palmquist, DL and Nurmela, KV 1998. Trans-Octadecenoic acids and milk fat depression in lactating dairy cows. Journal of Dairy Science 81, 1251–1261.
Gross, J, van Dorland, HA, Bruckmaier, RM and Schwarz, FJ 2011a. Performance and metabolic profile of dairy cows during a lactational and deliberately induced negative energy balance by feed restriction with subsequent realimentation. Journal of Dairy Science 94, 1820–1830.
Gross, J, van Dorland, HA, Bruckmaier, RM and Schwarz, FJ 2011b. Milk fatty acid profile related to energy balance in dairy cows. Journal of Dairy Research 78, 479–488.
Gross, JJ, Schwarz, FJ, Eder, K, van Dorland, HA and Bruckmaier, RM 2013. Liver fat content and lipid metabolism in dairy cows during early lactation and during a mid-lactation feed restriction. Journal of Dairy Science 96, 5008–5017.
Heuer, C, Schukken, YH and Dobbelaar, P 1999. Postpartum body condition score and results from the first test day milk as predictors of disease, fertility, yield, and culling in commercial dairy herds. Journal of Dairy Science 82, 295–304.
Huber, K, Dänicke, S, Rehage, J, Sauerwein, H, Otto, W, Rolle-Kampczyk, U and von Bergen, M 2016. Metabotypes with properly functioning mitochondria and anti-inflammation predict extended productive life span in dairy cows. Scientific Reports 6, 24642.
Jensen, HB, Poulsen, NA, Andersen, KK, Hammershøj, M, Poulsen, HD and Larsen, LB 2012. Distinct composition of bovine milk from Jersey and Holstein-Friesian cows with good, poor, or noncoagulation properties as reflected in protein genetic variants and isoforms. Journal of Dairy Science 95, 6905–6917.
Jensen, RG, Ferris, AM and Lammi-Keefe, CJ 1991. The composition of milk fat. Journal of Dairy Science 74, 3228–3243.
Kay, JK, Weber, WJ, Moore, CE, Bauman, DE, Hansen, LB, Chester-Jones, H, Crooker, BA and Baumgard, LH 2005. Effects of week of lactation and genetic selection for milk yield on milk fatty acid composition in Holstein cows. Journal of Dairy Science 88, 3886–3893.
Kleen, JL, Hooijer, GA, Rehage, J and Noordhuizen, JP 2003. Subacute ruminal acidosis (SARA): a review. Journal of Veterinary Medicine. Series A: Physiology, Pathology, Clinical Medicine 50, 406–414.
Koeck, A, Jamrozik, J, Schenkel, FS, Moore, RK, Lefebvre, DM, Kelton, DF and Miglior, F 2014. Genetic analysis of milk β-hydroxybutyrate and its association with fat-to-protein ratio, body condition score, clinical ketosis, and displaced abomasum in early first lactation of Canadian Holsteins. Journal of Dairy Science 97, 7286–7292.
Laeger, T, Metges, CC and Kuhla, B 2010. Role of beta-hydroxybutyric acid in the central regulation of energy balance. Appetite 54, 450–455.
McArt, JA, Nydam, DV and Overton, MW 2015. Hyperketonemia in early lactation dairy cattle: A deterministic estimate of component and total cost per case. Journal of Dairy Science 98, 2043–2054.
McLaren, CJ, Lissemore, KD, Duffield, TF, Leslie, KE, Kelton, DF and Grexton, B 2006. The relationship between herd level disease incidence and a return over feed index in Ontario dairy herds. Canadian Veterinary Journal 47, 767–773.
McParland, S and Berry, DP 2016. The potential of Fourier transform infrared spectroscopy of milk samples to predict energy intake and efficiency in dairy cows. Journal of Dairy Science 99, 4056–4070.
Miglior, F, Sewalem, A, Jamrozik, J, Lefebvre, DM and Moore, RK 2006. Analysis of milk urea nitrogen and lactose and their effect on longevity in Canadian dairy cattle. Journal of Dairy Science 89, 4886–4894.
Nousiainen, J, Shingfield, KJ and Huhtanen, P 2004. Evaluation of milk urea nitrogen as a diagnostic of protein feeding. Journal of Dairy Science 87, 386–398.
Oetzel, GR 2004. Monitoring and testing dairy herds for metabolic disease. Veterinary Clinics of North America: Food Animal Practice 20, 651–674.
Ospina, PA, Nydam, DV, Stokol, T and Overton, TR 2010. Evaluation of nonesterified fatty acids and beta-hydroxybutyrate in transition dairy cattle in the northeastern United States: critical thresholds for prediction of clinical diseases. Journal of Dairy Science 93, 546–554.
Overton, TR, McArt, JAA and Nydam, DV 2017. A 100-year review: metabolic health indicators and management of dairy cattle. Journal of Dairy Science 100, 10398–10417.
Palmquist, DL, Beaulieu, AD and Barbano, DM 1993. ADSA foundation symposium: milk fat synthesis and modification. Feed and animal factors influencing milk fat composition. Journal of Dairy Science 76, 1753–1771.
Palmquist, DL and Jenkins, TC 2017. A 100-year review: fat feeding of dairy cows. Journal of Dairy Science 100, 10061–10077.
Raboisson, D, Mounié, M and Maigné, E 2014. Diseases, reproductive performance, and changes in milk production associated with subclinical ketosis in dairy cows: a meta-analysis and review. Journal of Dairy Science 97, 7547–7563.
Roche, JR, Kolver, ES and Kay, JK 2005. Influence of precalving feed allowance on periparturient metabolic and hormonal responses and milk production in grazing dairy cows. Journal of Dairy Science 88, 677–689.
Santschi, DE, Lacroix, R, Durocher, J, Duplessis, M, Moore, RK and Lefebvre, DM 2016. Prevalence of elevated milk β-hydroxybutyrate concentrations in Holstein cows measured by Fourier-transform infrared analysis in dairy herd improvement milk samples and association with milk yield and components. Journal of Dairy Science 99, 9263–9270.
Schwarz, D 2018. Quality assurance tools in milk-testing laboratories – the view of an instrument manufacturer. In ICAR Technical Series No. 23: Cooperation, Networking and Global Interactions in the Animal Production Sector (ed. Bryant J, Burke M, Cook R, Harris B, Mosconi C and Wickham B), Proceedings of the ICAR Conference, 10–11 February 2018, Auckland, New Zealand, pp. 23–29.
Solano, J, Galindo, F, Orihuela, A and Galina, CS 2004. The effect of social rank on the physiological response during repeated stressful handling in Zebu cattle (Bos indicus). Physiology & Behavior 82, 679–683.
Sordillo, LM, Contreras, GA and Aitken, SL 2009. Metabolic factors affecting the inflammatory response of periparturient dairy cows. Animal Health Research Reviews 10, 53–63.
Stoop, WM, Bovenhuis, H, Heck, JML and van Arendonk, JAM 2009. Effect of lactation stage and energy status on milk fat composition of Holstein-Friesian cows. Journal of Dairy Science 92, 1469–1478.
Tsenkova, R, Atanassova, S, Toyoda, K, Ozaki, Y, Itoh, K and Fearn, T 1999. Near-infrared spectroscopy for dairy management: measurement of unhomogenized milk composition. Journal of Dairy Science 82, 2344–2351.
Tyburczy, C, Lock, AL, Dwyer, DA, Destaillats, F, Mouloungui, Z, Candy, L and Bauman, DE 2008. Uptake and utilization of trans octadecenoic acids in lactating cows. Journal of Dairy Science 91, 3850–3861.
van Haelst, YNT, Beeckman, A, van Knegsel, ATM and Fievez, V 2008. Short communication: elevated concentrations of oleic acid and long-chain fatty acids in milk fat of multiparous subclinical ketotic cows. Journal of Dairy Science 91, 4683–4686.
Vanlierde, A, Soyeurt, H, Gengler, N, Colinet, FG, Froidmont, E, Kreuzer, M, Grandl, F, Bell, M, Lund, P, Olijhoek, DW, Eugène, M, Martin, C, Kuhla, B and Dehareng, F 2018. Short communication: development of an equation for estimating methane emissions of dairy cows from milk Fourier transform mid-infrared spectra by using reference data obtained exclusively from respiration chambers. Journal of Dairy Science 101, 7618–7624.
Zarrin, M, Wellnitz, O, van Dorland, HA, Gross, JJ and Bruckmaier, RM 2014. Hyperketonemia during lipopolysaccharide-induced mastitis affects systemic and local intramammary metabolism in dairy cows. Journal of Dairy Science 97, 3531–3541.
Zbinden, RS, Falk, M, Münger, A, Dohme-Meier, F, van Dorland, HA, Bruckmaier, RM and Gross, JJ 2017. Metabolic load in dairy cows kept in herbage-based feeding systems and suitability of potential markers for compromised well-being. Journal of Animal Physiology and Animal Nutrition 101, 767–778.