Skip to main content Accessibility help
×
Home

Review: Are there indigenous Saccharomyces in the digestive tract of livestock animal species? Implications for health, nutrition and productivity traits

  • J. F. Garcia-Mazcorro (a1) (a2), S. L. Ishaq (a3), M. V. Rodriguez-Herrera (a4), C. A. Garcia-Hernandez (a2), J. R. Kawas (a5) and T. G. Nagaraja (a6)...

Abstract

All livestock animal species harbour complex microbial communities throughout their digestive tract that support vital biochemical processes, thus sustaining health and productivity. In part as a consequence of the strong and ancient alliance between the host and its associated microbes, the gut microbiota is also closely related to productivity traits such as feed efficiency. This phenomenon can help researchers and producers develop new and more effective microbiome-based interventions using probiotics, also known as direct-fed microbials (DFMs), in Animal Science. Here, we focus on one type of such beneficial microorganisms, the yeast Saccharomyces. Saccharomyces is one of the most widely used microorganisms as a DFM in livestock operations. Numerous studies have investigated the effects of dietary supplementation with different species, strains and doses of Saccharomyces (mostly Saccharomyces cerevisiae) on gut microbial ecology, health, nutrition and productivity traits of several livestock species. However, the possible existence of Saccharomyces which are indigenous to the animals’ digestive tract has received little attention and has never been the subject of a review. We for the first time provide a comprehensive review, with the objective of shedding light into the possible existence of indigenous Saccharomyces of the digestive tract of livestock. Saccharomyces cerevisiae is a nomadic yeast able to survive in a broad range of environments including soil, grass and silages. Therefore, it is very likely that cattle and other animals have been in direct contact with this and other types of Saccharomyces throughout their entire existence. However, to date, the majority of animal scientists seem to agree that the presence of Saccharomyces in any section of the gut only reflects dietary contamination; in other words, these are foreign organisms that are only transiently present in the gut. Importantly, this belief (i.e. that Saccharomyces come solely from the diet) is often not well grounded and does not necessarily hold for all the many other groups of microbes in the gut. In addition to summarizing the current body of literature involving Saccharomyces in the digestive tract, we discuss whether the beneficial effects associated with the consumption of Saccharomyces may be related to its foreign origin, though this concept may not necessarily satisfy the theories that have been proposed to explain probiotic efficacy in vivo. This novel review may prove useful for biomedical scientists and others wishing to improve health and productivity using Saccharomyces and other beneficial microorganisms.

Copyright

Corresponding author

References

Hide All
Alugongo, GM, Xiao, J, Wu, Z, Li, S, Wang, Y and Cao, Z 2017. Review: utilization of yeast of Saccharomyces cerevisiae origin in artificially raised calves. Journal of Animal Science and Biotechnology 8, 34.
Barratt, MJ, Lebrilla, C, Shapiro, HY and Gordon, JI 2017. The gut microbiota, food science, and human nutrition: a timely marriage. Cell Host Microbe 22, 134141.
Boix-Amorós, A, Martinez-Costa, C, Querol, A, Collado, MC and Mira, A 2017. Multiple approaches detect the presence of fungi in human breastmilk samples from healthy mothers. Scientific Reports 7, 13016.
Boulton, C and Quain, D 2001. Beer and brewing, historical perspective. In Brewing yeast and fermentation (ed. Boulton, C and Quain, D), pp. 515. Blackwell Publishing Ltd, Oxford, UK.
Buts, JP and De Keyser, N 2010. Interaction of Saccharomyces boulardii with intestinal brush border membranes: key to probiotic effects? Journal of Pediatric Gastroenterology and Nutrition 51, 532533.
Chaucheyras-Durand, F, Ameilbonne, A, Bichat, A, Mosoni, P, Ossa, F and Forano, E 2016. Live yeasts enhance fibre degradation in the cow rumen through an increase in plant substrate colonization by fibrolytic bacteria and fungi. Journal of Applied Microbiology 120, 560570.
Chong, CYL, Bloomfield, FH and O’Sullivan, JM 2018. Factors affecting gastrointestinal microbiome development in neonates. Nutrients 10, 274.
David, LA, Maurice, CF, Carmody, RN, Gootenberg, DB, Button, JE, Wolfe, BE, Ling, AV, Devlin, AS, Varma, Y, Fischbach, MA, Biddinger, SB, Dutton, RJ and Turnbaugh, PJ 2014. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559563.
EFSA Panel on Additives and Products or Substances used in Animal Feed (EFSA FEEDAP Panel) 2012. Guidance for the preparation of dossiers for zootechnical additives. European Food Safety Authority Journal 10, 25362554.
EFSA Panel on Additives and Products or Substances used in Animal Feed (EFSA FEEDAP Panel) 2014. Scientific Opinion on the safety and efficacy of Yea-Sacc® (Saccharomyces cerevisiae) as a feed additive for cattle for fattening, goats for fattening, dairy cows, dairy sheep, dairy goats and buffaloes. European Food Safety Authority Journal 12, 36663680.
Fonty, G and Chaucheyras-Durand, F 2006. Effects and modes of action of live yeasts in the rumen. Biologia 61, 741750.
Goddard, MR and Greig, D 2015. Saccharomyces cerevisiae: a nomadic yeast with no niche? FEMS Yeast Research 15, fov009.
Guan, LL, Nkrumah, JD, Basarab, JA and Moore, SS 2008. Linkage of microbial ecology to phenotype: correlation of rumen microbial ecology to cattle’s feed efficiency. FEMS Microbiology Letters 288, 8591.
Hallen-Adams, HE and Suhr, MJ 2017. Fungi in the healthy human gastrointestinal tract. Virulence 8, 352358.
Henderson, G, Cox, F, Ganesh, S, Jonker, A, Young, W, Global Rumen Census Collaborators and Janssen, PH 2015. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Scientific Reports 5, 14567.
Hudson, LE, McDermott, CD, Stewart, TP, Hudson, WH, Rios, D, Fasken, MB, Corbett, A and Lamb, TJ 2016. Characterization of the probiotic yeast Saccharomyces boulardii in the healthy mucosal immune system. PLoS ONE 11, e0153351.
Huseyin, CE, Cabrera Rubio, R, O’Sullivan, O, Cotter, PD and Scanlan, PD 2017. The fungal frontier: a comparative analysis of methods used in the study of the human gut mycobiome. Frontiers in Microbiology 8, 1432.
Ishaq, SL, AlZahal, O, Walker, N and McBride, B 2017. An investigation into rumen fungal and protozoal diversity in three rumen fractions, during high-fiber or gran-induced sub-acute ruminal acidosis conditions, with or without active dry yeast supplementation. Frontiers in Microbiology 8, 1943.
Ishtar Snoek, IS and Yde Steensma, H 2007. Factors involved in anaerobic growth of Saccharomyces cerevisiae . Yeast 24, 110.
Jami, E, Israel, A, Kotser, A and Mizrahi, I 2013. Exploring the bovine rumen bacterial community from birth to adulthood. ISME Journal 7, 10691079.
Jousset, A, Bienhold, C, Chatzinotas, A, Gallien, L, Gobet, A, Kurm, V, Küsel, K, Rillig, MC, Rivett, DW, Salles, JF, van der Heijden, MGA, Youssef, NH, Zhang, X, Wei, Z and Gera Hol, WH 2017. Where less may be more: how the rare biosphere pulls ecosystems strings. ISME Journal 11, 853862.
Knight, SJ and Goddard, MR 2016. Sporulation in soil as an overwinter survival strategy in Saccharomyces cerevisiae . FEMS Yeast Research 16, fov102.
Lynch, HA and Martin, SA 2002. Effects of Saccharomyces cerevisiae culture and Saccharomyces live cells on in vitro mixed ruminal microorganism fermentation. Journal of Dairy Science 85, 26032608.
Maldonado-Gómez, M, Martínez, I, Bottacini, F, O’Callaghan, A, Ventura, M, van Sinderen, D, Hillmann, B, Vangay, P, Knights, D, Hutkins, RW and Walter, J 2016. Stable engraftment of Bifidobacterium longum AH1206 in the human gut depends on individualized features of the resident microbiome. Cell Host & Microbe 20, 515526.
Malmuthuge, N and Griebel, PJ 2018. Fetal environment and fetal intestine are sterile during the third trimester of pregnancy. Veterinary Immunology and Immunopathology 204, 5964.
Martins, FS, Nardi, RMD, Arantes, RME, Rosa, CA, Neves, MJ and Nicoli, JR 2005. Screening of yeasts as probiotic based on capacities to colonize the gastrointestinal tract and to protect against enteropathogen challenge in mice. The Journal of General and Applied Microbiology 51, 8392.
McFarland, LV 2010. Systematic review and meta-analysis of Saccharomyces boulardii in adult patients. World Journal of Gastroenterology 16, 22022222.
Naseeb, S, James, SA, Alsammar, H, Michaels, CJ, Gini, B, Nueno-Palop, C, Bond, CJ, McGhie, H, Roberts, IN and Delneri, D 2017. Saccharomyces jurei sp. nov., isolation and genetic identification of a novel yeast species from Quercus robur . International Journal of Systematic and Evolutionary Microbiology 67, 20462052.
Nash, AK, Auchtung, TA, Wong, MC, Smith, DP, Gesell, JR, Ross, MC, Stewart, CJ, Metcalf, GA, Muzny, DM, Gibbs, RA, Ajami, NJ and Petrosino, JF 2017. The gut mycobiome of the Human Microbiome Project healthy cohort. Microbiome 5, 153.
Neiman, AM 2011. Sporulation in the budding yeast Saccharomyces cerevisiae . Genetics 189, 737765.
Newbold, CJ, Wallace, RJ and McIntosh, FM 1996. Mode of action of the yeast Saccharomyces cerevisiae as a feed additive for ruminants. British Journal of Nutrition 76, 249261.
Perea, K, Perz, K, Olivo, SK, Williams, A, Lachman, M, Ishaq, SL, Thomson, J and Yeoman, CJ 2017. Feed efficiency phenotypes in lambs involve changes in ruminal, colonic, and small-intestine-located microbiota. Journal of Animal Science 95, 25852592.
Poppy, GD, Rabiee, AR, Lean, IJ, Sanchez, WK, Dorton, KL and Morley, PS 2012. A meta-analysis of the effects of feeding yeast culture produced by anaerobic fermentation of Saccharomyces cerevisiae on milk production of lactating dairy cows. Journal of Dairy Science 95, 60276041.
Rajkowska, K and Kunicka-Styczyńska, A 2010. Probiotic properties of yeasts isolated from chicken feces and kefirs. Polish Journal of Microbiology 59, 257263.
Roy, U, Jessani, LG, Rudramurthy, SM, Gopalakrishnan, R, Dutta, S, Chakravarty, C, Jillwin, J and Chakrabarti, A 2017. Seven cases of Saccharomyces fungaemia related to use of probiotics. Mycoses 60, 375380.
Salvadó, Z, Arroyo-López, FN, Guillamón, JM, Salazar, G, Querol, A and Barrio, E 2011. Temperature adaptation markedly determines evolution within the genus Saccharomyces . Applied Environmental Microbiology 77, 22922302.
Santos, MC, Golt, C, Joerger, RD, Mechor, GD, Mourão, GB and Kung, L Jr 2017. Identification of the major yeasts isolated from high moisture corn and corn silages in the United States using genetic and biochemical methods. Journal of Dairy Science 100, 11511160.
Seddik, HA, Ceugniez, A, Bendali, F, Cudennec, B and Drider, D 2016. Yeasts isolated from Algerian infant’s feces revealed a burden of Candida albicans species, non-albicans Candida species and Saccharomyces cerevisiae . Archives of Microbiology 198, 7181.
Seedorf, H, Griffin, NW, Ridaura, VK, Reyes, A, Cheng, J, Rey, FE, Smith, MI, Simon, GM, Scheffrahn, RH, Woebken, D, Spormann, AM, Van Treuren, W, Ursell, LK, Pirrung, M, Robbins-Pianka, A, Cantarel, BL, Lombard, V, Henrissat, B, Knight, R and Gordon, JI 2014. Bacteria from diverse habitats colonize and compete in the mouse gut. Cell 159, 253266.
Shade, A and Handelsman, J 2012. Beyond the Venn diagram: the hunt for a core microbiome. Environmental Microbiology 14, 412.
Sokol, H, Leducq, V, Aschard, H, Pham, HP, Jegou, S, Landman, C, Cohen, D, Liguori, G, Bourrier, A, Nion-Larmurier, I, Cosnes, J, Seksik, P, Langella, P, Skurnik, D, Richard, ML and Beaugerie, L 2017. Fungal microbiota dysbiosis in IBD. Gut 66, 10391048.
Stefanini, I, Dapporto, L, Legras, J-L, Calabretta, A, Di Paola, M, De Filippo, C, Viola, R, Capretti, P, Polsinelli, M, Turillazzi, S and Cavalieri, D 2012. Role of social wasps in Saccharomyces cerevisiae ecology and evolution. Proceedings of the Natural Academy of Science USA 109, 1339813403.
Stier, H and Bischoff, SC 2016. Influence of Saccharomyces boulardii CNCM I-745 on the gut-associated immune system. Clinical and Experimental Gastroenterology 9, 269279.
Strope, PK, Skelly, DA, Kozmin, SG, Mahadevan, G, Stone, EA, Magwene, PM, Dietrich, FS and McCusker, JH 2015. The 100-genomes strains, an S. cerevisiae resource that illuminates its natural phenotypic and genotypic variation and emergence as an opportunistic pathogen. Genome Research 25, 762774.
The Human Microbiome Project Consortium 2012. Structure, function and diversity of the healthy human microbiome. Nature 486, 207214.
van Uden, N and Do Sousa, LC. 1957. Yeasts from the bovine caecum. Journal of General Microbiology 16, 385395.
Urubschurov, V, Büsing, K and Freyer, G 2016. New insights into the role of the porcine intestinal yeast, Kazachstania slooffiae, in intestinal environment of weaned piglets. FEMS Microbiology Ecology 93, fiw245.
Urubschurov, V, Janczyk, P, Pieper, R and Souffrant, WB 2008. Biological diversity of yeasts in the gastrointestinal tract of weaned piglets kept under different farm conditions. FEMS Yeast Research 8, 13491356.
Vitali, B, Ndagijimana, M, Cruciani, F, Carnevali, P, Candela, M, Guerzoni, ME and Brigidi, P 2010. Impact of a synbiotic food on the gut microbial ecology and metabolic profiles. BMC Microbiology 10, 4.
Wallace, RJ 1994. Ruminal microbiology, biotechnology, and ruminant nutrition: progress and problems. Journal of Animal Science 72, 29923003.
Walter, J, Maldonado-Gomez, MX and Martinez, I 2018. To engraft or not to engraft: an ecological framework for gut microbiome modulation with live microbes. Current Opinion in Biotechnology 49, 129139.
Williams, PEV, Tait, CAG, Innes, GM and Newbold, CJ 1991. Effects of the inclusion of yeast culture (Saccharomyces cerevisiae plus growth medium) in the diet of dairy cows on milk yield and forage degradation and fermentation patterns in the rumen of steers. Journal of Animal Science 69, 30163026.
Winter, SE and Bäumler, AJ 2014. Why related bacterial species bloom simultaneously in the gut: principles underlying the ‘Like will to like’ concept. Cellular Microbiology 16, 179184.
Yang, H, Huang, X, Fang, S, He, M, Zhao, Y, Wu, Z, Yang, M, Zhang, Z, Chen, C and Huang, L 2017. Unraveling the fecal microbiota and metagenomic functional capacity associated with feed efficiency in pigs. Frontiers in Microbiology 8, 1555.
Yeoman, CJ, Ishaq, SL, Bichi, E, Olivo, S, Lowe, J and Aldridge, BM 2018. Biogeographical differences in the influence of maternal microbial sources on the early successional development of the bovine neonatal gastrointestinal tract. Scientific Reports 8, 3197.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed