Skip to main content Accessibility help

Meta-analysis of phosphorus utilisation by broilers receiving corn-soyabean meal diets: influence of dietary calcium and microbial phytase

  • M. P. Létourneau-Montminy (a1) (a2), A. Narcy (a1), P. Lescoat (a1), J. F. Bernier (a3), M. Magnin (a2), C. Pomar (a4), Y. Nys (a1), D. Sauvant (a5) and C. Jondreville (a6)...


Pollution relative to phosphorus excretion in poultry manure as well as the soaring prices of phosphate, a non-renewable resource, remain of major importance. Thus, a good understanding of bird response regarding dietary phosphorus (P) is a prerequisite to optimise the utilisation of this essential element in broiler diets. A database built from 15 experiments with 203 treatments was used to predict the response of 21-day-old broilers to dietary non-phytate P (NPP), taking into account the main factors of variation, calcium (Ca) and microbial phytase derived from Aspergillus niger, in terms of average daily feed intake (ADFI), average daily gain (ADG), gain to feed (G:F) and tibia ash concentration. All criteria evolve linearly (P < 0.001) and quadratically (P < 0.001) with dietary NPP concentration. Dietary Ca affected the intercept and linear component for ADG (P < 0.01), G:F (P < 0.05) and tibia ash concentration (P < 0.001), whereas for ADFI, it affected only the intercept (P < 0.01). Microbial phytase addition impacted on the intercept, the linear and the quadratic coefficient for ADFI (P < 0.01), ADG (P < 0.001) and G:F (P < 0.05), and on the intercept and the linear component (P < 0.001) for tibia ash concentration. An evaluation of these models was then performed on a database built from 28 experiments and 255 treatments that were not used to perform the models. Results showed that ADFI, ADG and Tibia ash concentration were predicted fairly well (slope and intercept did not deviate from 0 to 1, respectively), whereas this was not the case for G:F. The increase in dietary Ca concentration aggravated P deficiency for all criteria while phytase addition had a positive effect. The more P deficiency was marked, the more the bird response to ADFI, ADG, G:F and tibia ash concentration was exacerbated. It must also be considered that even if the decrease in dietary Ca may improve P utilisation, it could in turn become limiting for bone mineralisation. In conclusion, this meta-analysis provides ways to reduce dietary P in broiler diets without impairing performance, taking into account dietary Ca and microbial phytase.


Corresponding author


Hide All
Adedokun, SA, Sands, JS, Adeola, O 2004. Determining the equivalent phosphorus released by an Escherichia coli-derived phytase in broilers chicks. Canadian Journal of Animal Science 84, 437444.
Al-Masri, MR 1995. Absorption and endogenous excretion of phosphorus in growing broiler chicks, as influenced by calcium and phosphorus ratios in feed. The British Journal of Nutrition 74, 407415.
Augspurger, NR, Baker, DH 2004. High dietary phytase levels maximize phytate-phosphorus utilization but do not affect protein utilization in chicks fed phosphorus- or amino acid-deficient diets. Journal of Animal Science 82, 11001107.
Augspurger, NI, Webel, DM, Lei, XG, Baker, DH 2003. Efficacy of an E. coli phytase expressed in yeast for releasing phytate-bound phosphorus in young chicks and pigs. Journal of Animal Science 81, 474483.
Boling, SD, Douglas, MW, Johnson, ML, Wang, X, Parsons, CM, Koelkebeck, KW, Zimmerman, RA 2000. The effects of dietary available phosphorus levels and phytase on performance of young and older laying hens. Poultry Science 79, 224230.
Denbow, DM, Ravindran, V, Kornegay, ET, Yi, Z, Hulet, RM 1995. Improving phosphorus availability in soybean meal for broilers by supplemental phytase. Poultry Science 74, 18311842.
Dilger, RN, Onyango, EM, Sands, JS, Adeola, O 2004. Evaluation of microbial phytase in broiler diets. Poultry Science 83, 962970.
Driver, JP, Pesti, GM, Bakalli, RI, Edwards, JHM 2005. Effects of calcium and nonphytate phosphorus concentrations on phytase efficacy in broiler chicks. Poultry Science 84, 14061417.
Hurwitz, S, Bar, A 1971. Calcium and phosphorus interrelationships in the intestine of the fowl. The Journal of Nutrition 101, 677686.
INRA 1989. L’alimentation des animaux monogastriques: Porc, Lapin, Volailles Institut National de la Recherche Agronomique, Paris.
Jendza, JA, Dilger, RN, Sands, JS, Adeola, O 2006. Efficacy and equivalency of an Escherichia coli-derived phytase for replacing inorganic phosphorus in the diets of broiler chickens and young pigs. Journal of Animal Science 84, 33643374.
Kornegay, ET, Denbow, DM, Yi, Z, Ravindran, V 1996. Response of broilers to graded levels of microbial phytase added to maize-soybean-meal-based diets containing three levels of non-phytate phosphorus. The British Journal of Nutrition 75, 839852.
Larbier, M, Leclercq, B 1992. Nutrition et alimentation des volailles. Institut National de la Recherche Agronomique, Paris, France.
Lima, FR, Mendoca, CX, Alvarez, JC, Garzillo, JMF, Ghion, E, Leal, PM 1997. Biological evaluations of commercial dicalcium phosphate as sources of available phosphorus for broiler chicks. Poultry Science 76, 17071713.
Létourneau-Montminy, MP, Lescoat, P, Narcy, A, Sauvant, D, Bernier, JF, Magnin, M, Pomar, C, Nys, Y, Jondreville, C 2008. Effect of reduced dietary calcium and phytase supplementation on calcium and phosphorus utilisation in broilers with modified mineral status. British Poultry Science 49, 709715.
Minitab 2007. Minitab version for Windows. In Minitab Inc., State College, PA, USA.
Mitchell, RD, Edwards, HM 1996a. Additive effects of 1,25-dihydroxycholecalciferol and phytase on phytate phosphorus utilization and related parameters in broiler chickens. Poultry Science 75, 111119.
Mitchell, RD, Edwards, HM 1996b. Effects of phytase and 1,25-dihydroxycholecalciferol on phytate utilization and the quantitative requirements for calcium and phosphorus in young broiler chickens. Poultry Science 75, 95110.
Narcy, A, Létourneau-Montminy, MP, Lescoat, P, Magnin, M, Nys, Y 2009. Effect of dietary calcium and phytase supplementation on phosphorus utilisation in chicks, Unpublished data.
Nelson, TS, Kirby, LK, Johnson, ZB 1990a. The relative biological value of feed phosphates for chicks. Poultry Science 69, 113118.
Nelson, TS, Harris, GC, Kirby, LK, Johnson, ZB 1990b. Effect of calcium and phosphorus on the incidence of leg abnormalities in growing broilers. Poultry Science 69, 14961502.
Nelson, TS, Hargus, WA, Storer, N, Walker, AC 1965. The influences of calcium and phosphorus utilisation in chicks. Poultry Science 44, 15081513.
NRC 1994. Nutrient requirements of poultry. National Academy Press, Washington, DC, USA.
Offner, A, Sauvant, D 2004. Comparative evaluation of the Molly, CNCPS, and LES rumen models. Animal Feed Science and Technology 112, 107130.
Persia, ME, Saylor, WW 2006. Effects of broiler strain, dietary nonphytate phosphorus, and phytase supplementation on chick performance and tibia ash. The Journal of Applied Poultry Research 15, 7281.
Pillai, PB, O’Connor-Dennie, T, Owens, CM, Emmert, JL 2006. Efficacy of an Escherichia coli phytase in broilers fed adequate or reduced phosphorus diets and its effect on carcass characteristics. Poultry Science 85, 17371745.
Qian, H, Kornegay, ET, Denbow, DM 1997. Utilization of phytate phosphorus and calcium as influenced by microbial phytase, cholecalciferol, and the calcium: total phosphorus ratio in broilers diets. Poultry Science 76, 3746.
Rama Rao, SV, Raju, MVLN, Reddy, MR, Pavani, P 2006. Interaction between dietary calcium and non-phytate phosphorus levels on growth, bone mineralization and mineral excretion in commercial broilers. Animal Feed Science and Technology 131, 135150.
SAS (Statistical Analysis System) 2002. Release 9.1. SAS Institute Inc., Cary, NC, USA.
Sauvant, D, Perez, JM, Tran, G 2004. Tables de composition et de valeur nutritive des matières premières destinées aux animaux d’élevage: porcs, volailles, bovins, ovins, caprins, lapins, chevaux, poissons. INRA Editions, Versailles, France.
Sauvant, D, Schmidely, P, Daudin, JJ, St-Pierre, N 2008. Meta-analyses of experimental data: application in animal nutrition. Animal 2, 12031214.
Sebastian, S, Touchburn, SP, Chavez, ER, Lague, PC 1996. Efficacy of supplemental microbial phytase at different dietary calcium levels on growth performance and mineral utilization of broiler chickens. Poultry Science 75, 15161523.
Selle, PH, Ravindran, V 2007. Microbial phytase in poultry nutrition. Animal Feed Science and Technology 135, 141.
Timmons, JR, Harter-Dennis, JM, Sefton, AE 2004. Evaluation of nonunifrom application of phytase (simulated) on growth performance and bone quality in broiler chicks. Journal of Applied Poultry Research 13, 311318.
Underwood, EJ, Suttle, NF 1999. The mineral nutrition of livestock. CABI Publishing, Wallingford, UK.
Viveros, A, Brenes, A, Arija, I, Centeno, C 2002. Effects of microbial phytase supplementation on mineral utilization and serum enzyme activities in broiler chicks fed different levels of phosphorus. Poultry Science 81, 11721183.
Waldroup, AL, Ammerman, CB, Harms, CH 1963. The relationship of phosphorus, calcium, and vitamin D3 in the diet of broiler type chickens. Poultry Science 42, 982989.
Waldroup, PW, Kersey, JH, Saleh, EA, Fritts, CA, Yan, F, Stilborn, HL, Crum, RC, Raboy, V 2000. Nonphytate phosphorus requirement and phosphorus excretion of broiler chicks fed diets composed of normal or high available phosphate corn with and without microbial phytase. Poultry Science 79, 14511459.
WPSA 1985. Mineral requirements for poultry- mineral requirements and recommendations for growing birds. World’s Poultry Science Journal 41, 252258.
Yan, F, Fritts, CA, Waldroup, PW 2003. Evaluation of modified dietary phosphorus levels with and without phytase supplementation on live performance and fecal phosphorus levels in broiler diets. 1. Full-term feeding recommandations. The Journal of Applied Poultry Research 12, 174182.
Yoshida, M, Hoshii, H 1977. Improvement of biological assay to determine available phosphorus with growing chicks. Japanese Poultry Science 14, 3343.
Yu, B, Jan, YC, Chung, TK, Lee, TT, Chiou, PWS 2004. Exogenous phytase activity in the gastrointestinal tract of broiler chickens. Animal Feed Science and Technology 117, 295303.


Meta-analysis of phosphorus utilisation by broilers receiving corn-soyabean meal diets: influence of dietary calcium and microbial phytase

  • M. P. Létourneau-Montminy (a1) (a2), A. Narcy (a1), P. Lescoat (a1), J. F. Bernier (a3), M. Magnin (a2), C. Pomar (a4), Y. Nys (a1), D. Sauvant (a5) and C. Jondreville (a6)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed