Skip to main content Accessibility help

In vitro gas production kinetics and short-chain fatty acid production from rumen incubation of diets supplemented with hop cones (Humulus lupulus L.)

  • A. Lavrenčič (a1), A. Levart (a1), I. J. Košir (a2) and A. Čerenak (a2)


The aim of this study was to assess the effects of hop cones (Humulus lupulus L.) from two varieties Aurora and Dana, differing in their α- and β-acid contents, on rumen microbial activity measured with in vitro gas production kinetics and short-chain fatty acids (SCFA) production. Hop cones were added to the total mixed dairy cow ration (CONT) in concentrations simulating a cow’s daily intake of 50, 100 and 200 g of hop cones – the concentrations of hop cones expressed on a substrate basis were 43, 82 and 153 mg/g of substrate. Substrates were anaerobically incubated in glass syringes, and gas production kinetic parameters were determined by fitting data with the Gompertz model. Gas produced after 24 h (Gas24), maximum fermentation rate (MFR) and time of maximum fermentation rate (TMFR) were calculated from the estimated gas production kinetic parameters. After 24 h of incubation, the fermentation liquids of each substrate were taken for the determination of SCFA. Increasing the hop cone concentration decreased the total potential gas production, Gas24, MFR and shortened TMFR. The highest hop cone concentration significantly decreased acetic and butyric acid productions and total SCFA production after 24 h of incubation, but not propionic acid production, resulting in a decreased ratio between acetic acid and propionic acid.


Corresponding author


Hide All
Benchaar, C, Petit, HV, Berthiaume, R, Whyte, T and Chouinard, P 2006. Effects of addition of essential oils and monesin premix on digestion, ruminal fermentation, milk production, and milk composition in dairy cows. Journal of Dairy Science 89, 43524364.
Calsamiglia, S, Busquet, M, Cardozo, PW, Castillejos, L and Ferret, A 2007. Invited review: essential oils as modifiers of rumen microbial fermentation. Journal of Dairy Science 90, 25802595.
DLG 1997. DLG Futterwerttabellen: Wiederkäuer, 7., erweite und uberarbeitete Auflage, DLG-Verlag, Frankfurt, 212 p.
Drouillard, JS, Uwituze, S, Shelor, MK, Higgins, JJ and Garden, S 2009. Effects of beta acid extracts of hops on ruminal metabolism and apparent total tract digestibility by steers fed high concentrate diets. In Ruminant physiology: digestion, metabolism, and effects of nutrition on reproduction and welfare (ed. Y Chilliard, F Glasser, Y Faulconnier, I Bocquier and M Doreau), pp. 164165. Wageningen Academic Publishers, Wageningen, The Netherlands.
Flythe, MD 2009. The antimicrobial effects od hops (Humulus lupulus L.) on ruminal hyper ammonia-producing bacteria. Letters in Applied Microbiology 48, 712717.
Flythe, MD and Aiken, GE 2010. Effects of hops (Humulus lupulus L.) extracts on volatile fatty acids production by rumen bacteria. Journal of Applied Microbiology 109, 11691176.
Garcia-Gonzalez, R, Lopez, S, Fernandez, M, Bodas, R and Gonzalez, JS 2008. Screening the activity of plants and spices for decreasing ruminal methane production in vitro. Animal Feed Science and Technology 147, 3652.
Holdeman, LV, Cato, EP and Moore, WEC 1977. Ether extraction of volatile fatty acids. In Anaerobe laboratory manual, 4th edition. Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA.
Jirovetz, L, Bail, S, Buchbauer, G, Denkova, Z, Slavchev, A, Stoyanova, A, Schmidt, E and Geisser, M 2006. Antimicrobial testing, gas chromatographic analisis and olfactory evaluation of an essential oil of hop cones (Humulus lupulus L.) from Bavaria and some of its main compounds. Scientia Pharmaceutica 74, 189201.
Kirchgessner, M 1997. Tierernährung: Leitfaden für Studium, Beratung and Praxis. 10., neuarbeitede Auflage. Verlags Union Agrar, DLG Verlag Frankfurt (Main), Germany, 582p.
Larson, AE, Yu, RRY, Lee, OA, Price, S, Haas, GJ and Johnson, EA 1996. Antimicrobial activity of hop extracts against Listeria monocytogenes in media and in food. International Journal of Food Microbiology 33, 195207.
Lavrenčič, A, Stefanon, B and Susmel, P 1997. An evaluation of the Gompertz model in degradability studies of forage chemical components. Animal Science 64, 423431.
Lavrenčič, A, Levart, A, Košir, IJ and Čerenak, A 2014. Influence of two hop (Humulus lupulus L.) varieties on in vitro dry matter and crude protein degradability and digestibility in ruminants. Journal of the Science of Food and Agriculture 94, 12481252.
Menke, KH and Steingass, H 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Animal Research and Development 28, 755.
Moss, AR, Jouany, J-P and Newbold, J 2000. Methane production by ruminants: its contribution to global warming. Annales de Zootechnie 49, 231253.
Mueller-Harvey, I 2006. Unravelling the conundrum of tannins in animal nutrition and health. Journal of the Science of Food and Agriculture 86, 20102037.
Narvaez, N, Wang, Y, Zhonjou, X, Alexander, T, Garden, S and McAllister, T 2013. Effects of hop varieties on ruminal fermentation and bacterial community in an artificial rumen (rusitec). Journal of the Science of Food and Agriculture 93, 4552.
Pavlovič, M 2012. International Hop Grower’s Convention. Retrieved October 22, 2012, from https://www.hmelj-giz/ihgc/
Sağdiç, O, Karahan, AG, Özcan, M and Özkan, G 2003. Note: effect of some spice extracts on bacterial inhibition. Food Science and Technology International 9, 353358.
Sakamoto, K and Konings, W 2003. Beer spoilage bacteria and hop resistance. International Journal of Food Microbiology 89, 105124.
Schmidt, MA and Nelson, ML 2006. Effects of hop acids. I. In vitro ruminal fermentation. Journal of Animal Science 84 (suppl. 1), 239240.
Schmidt, MA, Nelson, ML, Michal, JJ and Westberg, HH 2006. Effects of hop acids. II. Beta acids on ruminal methane emissions, protozoal populations, fermentation and CoM concentration in cannulated finishing steers. Journal of Animal Science 84 (suppl. 1), 240.
Serra, A, Macia, A, Romero, M-P, Reguant, J, Ortega, N and Motilva, M-J 2012. Metabolic pathways of the colonic metabolism of flavonoids (flavonols, flavones and flavanones) and phenolic acids. Food Chemistry 130, 383393.
Siragusa, GR, Haas, GJ, Matthews, DD, Smith, RJ, Buhr, RJ, Dale, NM and Wise, MG 2008. Antimicrobial activity of lupulone against Clostridium perfringens in the chicken intestinal tract jejunum and caecum. Journal of Antimicrobial Chemotherapy 61, 853858.
Srivasan, V, Goldberg, D and Haas, GJ 2004. Contribution to the antimicrobial spectrum of hop constituents. Economic Botany 58, S230S238.
Staerfl, SM, Kreuzer, M and Soliva, CR 2010. In vitro screening of unconventional feeds and various natural supplements for their ruminal methane mitigation potential when included in a maize-silage based diet. Journal of Animal Feed Science 19, 651664.
Statistical Analysis Systems Institute (SAS) 1994. SAS/STAT user’s guide (release 6.03 edition. SAS Institute, Cary, USA, 1686p.
Van Cleemput, M, Cattor, K, De Bosscher, K, Haegeman, G, De Keukeleire, D and Heyerick, A 2009. Hop (Humulus lupulus)-derived bitter acids as multipotent bioactive compounds. Journal of Natural Products 72, 12201230.
Van Soest, PJ 1994. Nutritional ecology of the ruminant, 2nd edition. Cornell University Press, Ithaca, USA, 476p.
Wang, Y, Chaves, AV, Rigby, FL, He, ML and McAllister, TA 2010. Effects of hops on ruminal fermentation, growth, carcass traits and shedding of Escherichia coli of feedlot cattle. Livestock Science 129, 135140.


Type Description Title
Supplementary materials

Lavrenčič Supplementary Material
Figure S1

 Word (115 KB)
115 KB
Supplementary materials

Lavrenčič Supplementary Material
Figure S2

 Word (120 KB)
120 KB

In vitro gas production kinetics and short-chain fatty acid production from rumen incubation of diets supplemented with hop cones (Humulus lupulus L.)

  • A. Lavrenčič (a1), A. Levart (a1), I. J. Košir (a2) and A. Čerenak (a2)


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed