Skip to main content Accessibility help

Genome-wide study to detect single nucleotide polymorphisms associated with visceral and subcutaneous fat deposition in Holstein dairy cows

  • P. Melendez (a1), S. E. Poock (a1), P. Pithua (a1), P. Pinedo (a2), D. Manriquez (a2), S. G. Moore (a3), J. D. Neal (a3) and J. F. Taylor (a3)...


Excessive abdominal fat might be associated with more severe metabolic disorders in Holstein cows. Our hypothesis was that there are genetic differences between cows with low and high abdominal fat deposition and a normal cover of subcutaneous adipose tissue. The objective of this study was to assess the genetic basis for variation in visceral adiposity in US Holstein cows. The study included adult Holstein cows sampled from a slaughterhouse (Green Bay, WI, USA) during September 2016. Only animals with a body condition score between 2.75 and 3.25 were considered. The extent of omental fat at the level of the insertion of the lesser omentum over the pylorus area was assessed. A group of 100 Holstein cows with an omental fold <5 mm in thickness and minimum fat deposition throughout the entire omentum, and the second group of 100 cows with an omental fold ⩾20 mm in thickness and with a marked fat deposition observed throughout the entire omentum were sampled. A small piece of muscle from the neck was collected from each cow into a sterile container for DNA extraction. Samples were submitted to a commercial laboratory for interrogation of genome-wide genomic variation using the Illumina BovineHD Beadchip. Genome-Wide association analysis was performed to test potential associations between fat deposition and genomic variation. A univariate mixed linear model analysis was performed using genome-wide efficient mixed model association to identify single nucleotide polymorphisms (SNPs) significantly associated with variation in a visceral fat deposition. The chip heritability was 0.686 and the estimated additive genetic and residual variance components were 0.427 and 0.074, respectively. In total, 11 SNPs defining four quantitative trait locus (QTL) regions were found to be significantly associated with visceral fat deposition (P<0.00001). Among them, two of the QTL were detected with four and five significantly associated SNPs, respectively; whereas, the QTLs detected on BTA12 and BTA19 were each detected with only one significantly associated SNP. No enriched gene ontology terms were found within the gene networks harboring these genes when supplied to DAVID using either the Bos taurus or human gene ontology databases. We conclude that excessive omental fat in Holstein cows with similar body condition scores is not caused by a single Mendelian locus and that the trait appears to be at least moderately heritable; consequently, selection to reduce excessive omental fat is potentially possible, but would require the generation of predicted transmitting abilities from larger and random samples of Holstein cattle.


Corresponding author


Hide All
Abdelhaleem, M, Maltais, L and Wain, H 2003. The human DDX and DHX gene families of putative RNA helicases. Genomics 81, 618622.
Altshuler, D, Daly, MJ and Lander, ES 2008. Genetic mapping in human disease. Science 322, 881888.
Bene, FD and Wittbrodt, J 2005. Cell cycle control by homeobox genes in development and disease. Seminars in Cell and Developmental Biology 16, 449460.
Cawthorn, WP, Scheller, EL and MacDougald, OA 2012. Adipose tissue stem cells meet preadipocyte commitment: going back to the future. Journal of Lipid Research 53, 227246.
De Koster, JD and Opsomer, G 2013. Insulin resistance in dairy cows. Veterinary Clinics of North America Food Animal Practice 29, 299322.
DeMari, J, Mroske, C, Tang, S, Nimeh, J, Miller, R and Lebel, RR 2016. CLTC as a clinically novel gene associated with multiple malformations and developmental delay. American Journal of Medical Genetics 170A, 958966.
Do, DN, Bissonnette, N, Lacasse, P, Miglior, F, Sargolzaei, M, Zhao, X and Ibeagha-Awemu, EM 2017. Genome-wide association analysis and pathways enrichment for lactation persistency in Canadian Holstein cattle. Journal of Dairy Science 100, 19551970.
Doe, J, Kaindi, AM, Jijiwa, M, de la Vega, M, Hu, H, Griffiths, GS, Fontelonga, TM, Barraza, P, Cruz, V, Van Ry, P, Ramos, JW, Burkin, DJ and Matter, ML 2017. PTRH2 gene mutation causes progressive congenital skeletal muscle pathology. Human Molecular Genetics 26, 14581464.
Drackley, JK 1999. Biology of dairy cows during the transition period: the final frontier? Journal of Dairy Science 82, 22592273.
Duffaut, C, Zakaroff-Girard, A, Bourlier, V, Decaunes, P, Maumus, M, Chiotasso, P, Sengenès, C, Lafontan, M, Galitzky, J and Bouloumié, A 2009. Interplay between human adipocytes and T lymphocytes in obesity: CCL20 as an adipochemokine and T lymphocytes as lipogenic modulators. Arteriosclerosis Thrombosis and Vascular Biology 29, 16081614.
Faty, A, Ferré, P and Commans, S 2012. The acute phase protein Serum Amyloid A induces lipolysis and inflammation in human adipocytes through distinct pathways. PLos One 7, e34031.
Ferguson, JM, Galligan, DT and Thomsen, N 1994. Principal descriptors of body condition score in Holstein cows. Journal of Dairy Science 77, 26952703.
Geisler, CE and Renquist, BJ 2017. Hepatic lipid accumulation: cause and consequence of dysregulated glucoregulatory hormones. Journal of Endocrinology 234, R1R21.
Goff, JP and Horst, RL 1997. Physiological changes at parturition and their relationship to metabolic disorders. Journal of Dairy Science 80, 12601268.
Heid, IM, Jackson, AU, Randall, JC, Winkler, TW, Qi, L, Steinthorsdottir, V, Thorleifsson, G, Zillikens, MC, Speliotes, EK, Mägi, R et al 2010. MAGIC meta-analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution. Nature Genetics 42, 949960.
Hostens, M, Fievez, V, Leroy, JL, Van Ranst, J, Vlaeminck, B and Opsomer, G 2012. The fatty acid profile of subcutaneous and abdominal fat in dairy cows with left displacement of the abomasum. Journal of Dairy Science 95, 37563765.
Hosono, K, Sasaki, T, Minoshima, S and Shimizu, N 2004. Identification and characterization of a novel gene family YPEL in a wide spectrum of eukaryotic species. Gene 340, 3143.
Huang, DW, Sherman, BT and Lempicki, RA 2009a. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Research 37, 113.
Huang, DW, Sherman, BT and Lempicki, RA 2009b. Systematic and integrative analysis of large gene lists using DAVID Bioinformatics Resources. Nature Protocols 4, 4457.
Huang, GH, Shan, H, Li, D, Zhou, B and Pang, PF 2017. MiR-199a-5p suppresses tumorigenesis by targeting clathrin heavy chain in hepatocellular carcinoma. Cell Biochemistry and Function 35, 98104.
Ingvartsen, KL and Andersen, JB 2000. Integration of metabolism and intake regulation: a review focusing on periparturient animals. Journal of Dairy Science 83, 15731597.
Liang, D, Arnold, LM, Stowe, CJ, Harmon, RJ and Bewley, JM 2017. Estimating US dairy clinical disease costs with a stochastic simulation model. Journal of Dairy Science 100, 14721486.
Locher, LF, Meyer, N, Weber, EM, Rehage, J, Meyer, U, Dänicke, S and Huber, K 2011. Hormone-sensitive lipase protein expression and extent of phosphorylation in subcutaneous and retroperitoneal adipose tissues in the periparturient dairy cow. Journal of Dairy Science 94, 45144523.
Loncle, C, Molejon, MI, Lac, S, Tellechea, JI, Lomberk, G, Gramatica, L, Fernandez Zapico, MF, Dusetti, N, Urrutia, R and Iovanna, JL 2016. The pancreatitis-associated protein VMP1, a key regulator of inducible autophagy, promotes KrasG12D-mediated pancreatic cancer initiation. Cell Death and Disease 7, e2295.
Meier, S, Verkerk, GA, Kay, JK, Macdonald, KA and Roche, JR 2013. Genetic ancestry modifies fatty acid concentrations in different adipose tissue depots and milk fat. Journal of Dairy Research 80, 197204.
Melendez, P and Risco, CA 2016. Reproduction, events and management pregnancy: periparturient disorders. In Reference module in food sciences (ed. J Smithers), pp. 17. Elsevier Inc, Amsterdam, the Netherlands.
Mömke, S, Sickinger, M, Lichtner, P, Doll, K, Rehage, J and Distl, O 2013. Genome-wide association analysis identifies loci for left-sided displacement of the abomasum in German Holstein cattle. Journal of Dairy Science 96, 39593964.
Olsson, P, Motegi, A, Bera, TK, Lee, B and Pastan, I 2003. PRAC2: a new gene expressed in human prostate and prostate cancer. The Prostate 56, 123130.
Peletto S, Strillacci MG, Capucchio MT, Biasibetti, Modesto P, Acutis PL and Bagnato A 2017. Genetic basis of Lipomatous Myopathy in Piedmontese beef cattle. Livestock Science 206, 9–16.
Picker-Minh, S, Mignot, C, Doummar, D, Hashem, M, Faqeih, E, Josset, P, Dubern, B, Alkuraya, FS, Kraemer, N and Kaindl, AM 2016. Phenotype variability of infantile-onset multisystem neurologic, endocrine, and pancreatic disease INMEPD. Orphanet Journal of Rare Diseases 11, 52.
Purcell, S, Neale, B, Todd-Brown, K, Thomas, L, Ferreira, M, Bender, D, Maller, J, Sklar, P, de Bakker, P, Daly, MJ and Sham, PC 2007. PLINK: a tool set for whole-genome and population-based linkage analyses. American Journal of Human Genetics 81, 559575.
Purfield, DC, McClure, M and Berry, DP 2016. Justification for setting the individual animal genotype call rate threshold at eighty-five percent. Journal of Animal Science 94, 45584569.
Quinones, SC and Innis, JW 2014. Human HOX gene disorders. Molecular Genetics and Metabolism 111, 415.
Raab, M, Smith, X, Matthess, Y, Strebhardt, K and Rudd, CE 2011. SKAP1 protein PH domain determines RapL membrane localization and Rap1 protein complex formation for T cell receptor (TCR) activation of LFA-1. Journal of Biological Chemistry 286, 2966329670.
Saremi, B, Sauerwein, H, Dänicke, S and Mielenz, M 2012. Technical note: identification of reference genes for gene expression studies in different bovine tissues focusing on different fat depots. Journal of Dairy Science 95, 31313138.
Schaefer, DM 2005. Yield and quality of Holstein beef. In Managing and marketing quality Holstein steers conference (ed. R Tigner and J Lehmkuhler), pp. 323333. Wisconsin Agriculture Service Association, Madison, WI, USA.
Singh, SP, Häussler, S, Heinz, JFL, Akter, SH, Saremi, B, Müller, U and Rehage, J 2014. Lactation driven dynamics of adiponectin supply from different fat depots to circulation in cows. Domestic Animal Endocrinology 47, 3546.
Tchkonia, T, Thomou, T, Zhu, Y, Karagiannides, I, Pothoulakis, C, Jensen, MD and Kirkland, JL 2013. Mechanisms and metabolic implications of regional differences among fat depots. Cell Metabolism 17, 644656.
Van Dorp, TE, Dekkers, JCM, Martin, SW and Noordhuizen, JP 1998. Genetic parameters of health disorders, and relationships with 305-day milk yield and conformation traits of registered Holstein cows. Journal of Dairy Science 81, 22642270.
Weller, JI, Ezra, E and Ron, M 2017. Invited review: a perspective on the future of genomic selection in dairy cattle. Journal of Dairy Science 100, 86338644.
Wigginton, JE, Cutler, DJ and Abecasis, GR 2005. A note on exact tests of Hardy-Weinberg equilibrium. American Journal of Human Genetics 76, 887893.
Wozniak, DF, Xiao, M, Xu, L, Yamada, KA and Ornitz, DM 2007. Impaired spatial learning and defective theta burst induced LTP in mice lacking fibroblast growth factor 14. Neurobiological Disorders 26, 1426.
Zhao, J, Wang, L, Zhou, H, Liu, L, Lu, A, Li, G, Schatten, H and Liang, C 2013. Clathrin heavy chain 1 is required for spindle assembly and chromosome congression in mouse oocytes. Microscopy and Microanalysis 19, 13641373.
Zhou, X and Stephens, M 2012. Genome-wide efficient mixed-model analysis for association studies. Nature Genetics 44, 821824.


Related content

Powered by UNSILO

Genome-wide study to detect single nucleotide polymorphisms associated with visceral and subcutaneous fat deposition in Holstein dairy cows

  • P. Melendez (a1), S. E. Poock (a1), P. Pithua (a1), P. Pinedo (a2), D. Manriquez (a2), S. G. Moore (a3), J. D. Neal (a3) and J. F. Taylor (a3)...


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.