Skip to main content Accessibility help

Genetic (co)variation in skin pigmentation patterns and growth in rainbow trout

  • F. H. Rodríguez (a1) (a2), G. Cáceres (a1), J. P. Lhorente (a3), S. Newman (a4), R. Bangera (a5), T. Tadich (a1), R. Neira (a6) and J. M. Yáñez (a1) (a2) (a7)...


From a physiological-behavioral perspective, it has been shown that fish with a higher density of black eumelanin spots are more dominant, less sensitive to stress, have higher feed intake, better feed efficiency and therefore are larger in size. Thus, we hypothesized that genetic (co)variation between skin pigmentation patterns and growth exists and it is advantageous in rainbow trout. The objective of this study was to determine the genetic relationships between skin pigmentation patterns and BW in a breeding population of rainbow trout. We performed a genetic analysis of pigmentation traits including dorsal color (DC), lateral band (LB) intensity, amount of spotting above (SA) and below (SB) the lateral line, and BW at harvest (HW). Variance components were estimated using a multi-trait linear animal model fitted by restricted maximum likelihood. Estimated heritabilities were 0.08±0.02, 0.17±0.03, 0.44±0.04, 0.17±0.04 and 0.23±0.04 for DC, LB, SA, SB and HW, respectively. Genetic correlations between HW and skin color traits were 0.42±0.13, 0.32±0.14 and 0.25±0.11 for LB, SA and SB, respectively. These results indicate positive, but low to moderate genetic relationships between the amount of spotting and BW in rainbow trout. Thus, higher levels of spotting are genetically associated with better growth performance in this population.


Corresponding author


Hide All
Backström, T, Heynen, M, Brännäs, E, Nilsson, J and Magnhagen, C 2015. Dominance and stress signalling of carotenoid pigmentation in Arctic charr (Salvelinus alpinus): lateralization effects? Physiology and Behavior 138, 5257.
Castanheira, MF, Conceicao, LEC, Millot, S, Rey, S, Bégout, ML, Damsgard, B, Kristiansen, T, Höglund, E, Øverli, Ø and Martins, CIM 2015. Coping styles in farmed fish: consequences for aquaculture. Reviews in Aquaculture 7, 119.
Colihueque, N 2010. Genetics of salmonid skin pigmentation: clues and prospects for improving the external appearance of farmed salmonids. Reviews in Fish Biology and Fisheries 20, 7186.
Ducrest, AL, Keller, L and Roulin, A 2008. Pleiotropy in the melanocortin system, coloration and behavioural syndromes. Trends in Ecology & Evolution 23, 502510.
Dufflocq, P, Lhorente, JP, Bangera, R, Neira, R, Newman, S and Yáñez, JM 2017. Correlated response of flesh color to selection for harvest weight in coho salmon (Oncorhynchus kisutch). Aquaculture 472, 38–43.
Falconer, DS and Mackay, TFC 1996. Introduction to quantitative genetics, 4th edition. Essex, UK.
Food and Agriculture Organization (FAO) 2016. The state of world fisheries and aquaculture contributing to food security and nutrition for all. FAO, Rome, Italy.
Fevolden, SE, Røed, K and Fjalestad, K 2003. A combined salt and confinement stress enhances mortality in rainbow trout (Onchorhynchus mykiss) selected for high stress responsiveness. Aquaculture 216, 6776.
Flores-Mara, R, Rodríguez, FH, Bangera, R, Lhorente, JP, Neira, R, Newman, S and Yáñez, JM 2017. Resistance against infectious pancreatic necrosis exhibits significant genetic variation and is not genetically correlated with harvest weight in rainbow trout (Oncorhynchus mykiss). Aquaculture 479, 155160.
Gallardo, JA, Lhorente, JP and Neira, R 2010. The consequences of including non-additive effects on the genetic evaluation of harvest body weight in Coho salmon (Oncorhynchus kisutch). Genetics Selection Evolution 42, 19.
Gilmour, AR, Gogel, BJ, Cullis, BR, Thompson, R and Butler, D 2009. ASReml user guide release 3.0. VSN International Ltd, Hemel Hempstead, UK.
Gjedrem, T 2012. Genetic improvement for the development of efficient global aquaculture: a personal opinion review. Aquaculture 344, 1222.
Gonzalez-Pena, D, Gao, G, Baranski, M, Moen, T, Cleveland, BM, Kenney, PB, Vallejo, RL, Palti, Y and Leeds, TD 2016. Genome-wide association study for identifying loci that affect fillet yield, carcass, and body weight traits in rainbow trout (Oncorhynchus mykiss). Frontiers in Genetics 7, 203.
Gutierrez, AP, Yáñez, JM, Fukui, S, Swift, B and Davidson, WS 2015. Genome-wide association study (GWAS) for growth rate and age at sexual maturation in Atlantic salmon (Salmo salar). PLoS ONE 10, e0119730.
Haffray, P, Bugeon, J, Pincent, C, Chapuis, H, Mazeiraud, E, Rossignol, MN, Chatain, B, Vandeputte, M and Dupont-Nivet, M 2012. Negative genetic correlations between production traits and head or bony tissues in large all-female rainbow trout (Oncorhynchus mykiss). Aquaculture 368, 145152.
Henryon, M, Jokumsen, A, Berg, P, Lund, I, Pedersen, PB, Olesen, NJ and Slierendrecht, WJ 2002. Genetic variation for growth rate, feed conversion efficiency, and disease resistance exists within a farmed population of rainbow trout. Aquaculture 209, 5976.
Houston, RD, Taggart, JB, Cézard, T, Bekaert, M, Lowe, NR, Downing, A, Talbot, R, Bishop, SC, Archibald, AL, Bron, JE, Penman, DJ, Davassi, A, Brew, F, Tinch, AE, Gharbi, K and Hamilton, A 2014. Development and validation of a high density SNP genotyping array for Atlantic salmon (Salmo salar). BMC Genomics 15, 90.
Janhunen, M, Kause, A, Vehviläinen, H and Järvisalo, O 2012. Genetics of microenvironmental sensitivity of body weight in rainbow trout (Oncorhynchus mykiss) selected for improved growth. PLoS ONE 7, e38766.
Kause, A, Ritola, O and Paananen, T 2004. Breeding for improved appearance of large rainbow trout in two production environments. Aquaculture Research 35, 924930.
Kause, A, Ritola, O, Paananen, T, Eskelinen, U and Mäntysaari, E 2003. Big and beautiful? Quantitative genetic parameters for appearance of large rainbow trout. Journal of Fish Biology 62, 610622.
Kittilsen, S, Ellis, T, Schjolden, J, Braastad, B and Øverli, Ø 2009b. Determining stress-responsiveness in family groups of Atlantic salmon (Salmo salar) using non-invasive measures. Aquaculture 298, 146152.
Kittilsen, S, Johansen, I, Braastad, B and Øverli, Ø 2012. Pigments, parasites and personalitiy: towards a unifying role for steroid hormones? PLoS ONE 7, e34281.
Kittilsen, S, Schjolden, J, Beitnes-Johansen, I, Shaw, J, Pottinger, T, Sørensen, C, Braastad, BO, Bakken, M and Øverli, Ø 2009a. Melanin-based skin spots reflect stress responsiveness in salmonid fish. Hormones and Behavior 56, 292298.
Macqueen, DJ, Primmer, C, Houston, R, Nowak, B, Bernatchez, L, Bergseth, S, Davidson, WS, Gallardo-Escárate, C, Goldammer, T, Guiguen, Y, Iturra, P, Kijas, JW, Koop, B, Lien, S, Maass, A, Martin, S, McGinnity, P, Montecino, M, Naish, K, Nichols, K, Ólafsson, K, Omholt, S, Palti, Y, Plastow, G, Rexroad, C 3rd, Rise, M, Ritchie, R, Sandve, SR, Schulte, P, Tello, A, Vidal, R, Vik, JO, Wargelius, A and Yáñez, JM 2017. Functional Annotation of All Salmonid Genomes (FAASG): an international initiative supporting future salmonid research, conservation and aquaculture. BMC Genomics 18, 484.
Øverli, Ø, Nordgreen, J, Mejdell, C, Janczak, A, Kittilsen, S, Johansen, IB and Horsberg, TE 2014. Ectoparasitic sea lice (Lepeophtheirus salmonis) affect behavior and brain serotonergic activity in Atlantic salmon (Salmo salar L.): perspectives on animal welfare. Physiology and Behavior 132, 4450.
Øverli, Ø, Pottinger, TG, Carrick, TR, Øverli, E and Winberg, S 2002. Differences in behavior between rainbow trout selected for high- and low-stress responsiveness. Journal of Experimental Biology 205, 391395.
Palti, Y, Gao, G, Liu, S, Kent, MP, Lien, S, Miller, MR, Rexroad, CE 3rd and Moen, T 2015. The development and characterization of a 57K single nucleotide polymorphism array for rainbow trout. Molecular Ecology Resources 15, 662672.
Pante, MJR, Gjerde, B, McMillan, I and Misztal, I 2002. Estimation of additive and dominance genetic variances for body weight at harvest in rainbow trout, Oncorhynchus mykiss. Aquaculture 204, 383392.
Pérez, SD, Cánepa, M, Fossati, M, Fernandino, J, Delgadin, T, Canosa, L, Somoza, GM and Vissio, PG 2012. Melanin concentrating hormone (MCH) is involved in the regulation of growth hormone in Cichlasoma dimerus (Cichlidae Teleostei). General and Comparative Endocrinology 176, 102111.
Rodgers, JD, Ewing, RD and Hall, JD 1987. Physiological changes during seaward migration of wild juvenile coho salmon (Oncorhynchus kisutch). Canadian Journal of Fisheries and Aquatic Science 44, 452457.
Ruíz-Gomez, ML, Huntingford, FA, Øverli, Ø, Thörnqvist, PO and Höglund, E 2011. Response to environmental change in rainbow trout selected for divergent stress coping styles. Physiology and Behavior 102, 317322.
Sae-Lim, P, Kause, A, Janhunen, M, Vehviläinen, H, Koskinen, H, Gjerde, B, Lillehammer, M and Mulder, HA 2015. Genetic (co)variance of rainbow trout (Oncorhynchus mykiss) body weight and its uniformity across production environments. Genetics Selection Evolution 47, 1.
Takahashi, A, Tsuchiya, K, Yamanome, T, Amano, M, Yasuda, A, Yamamori, K and Kawauchi, H 2004. Possible involvement of melanin-concentrating hormone in food intake in a teleost fish, barfin flounder. Peptides 25, 16131622.
Taub, S and Palacios, S 2003. La acuicultura en Chile. Techno-Press, Santiago de Chile. 326 pp.
Tsai, HY, Hamilton, A, Tinch, AE, Guy, DR, Gharbi, K, Stear, MJ, Matika, O, Bishop, SC and Houston, RD 2015. Genome wide association and genomic prediction for growth traits in juvenile farmed Atlantic salmon using a high density SNP array. BMC Genomics 16, 969.
Yamanome, T, Amano, M and Takahashi, A 2005. White background reduces the occurrence of staining, activates melanin-concentrating hormone and promotes somatic growth in barfin flounder. Aquaculture 244, 323329.
Yáñez, JM, Bangera, R, Lhorente, JP, Barría, A, Oyarzún, M, Neira, R and Newman, S 2016a. Negative genetic correlation between resistance against Piscirickettsia salmonis and harvest weight in coho salmon (Oncorhynchus kisutch). Aquaculture 459, 813.
Yáñez, JM, Naswa, S, López, ME, Bassini, L, Correa, K, Gilbey, J, Bernatchez, L, Norris, A, Neira, R, Lhorente, JP, Schnable, PS, Newman, S, Mileham, A, Deeb, N, Di Genova, A and Maass, A. 2016b. Genomewide single nucleotide polymorphism discovery in Atlantic salmon (Salmo salar): validation in wild and farmed American and European populations. Molecular Ecology Resources 16, 10021011.
Yáñez, JM, Newman, S and Houston, RD 2015. Genomics in aquaculture to better understand species biology and accelerate genetic progress. Frontiers in Genetics 6, 128.
Yoshida, GM, Bangera, R, Carvalheiro, R, Correa, K, Figueroa, R, Lhorente, JP and Yáñez, JM 2018a. Genomic prediction accuracy for resistance against Piscirickettsia salmonis in farmed rainbow trout. G3: Genes, Genomes, Genetics 8, 719726.
Yoshida, GM, Carvalheiro, R, Rodriguez, F, Lhorente, JP and Yáñez, JM 2018b. Single-step genomic evaluation improves accuracy of breeding value predictions for resistance to infectious pancreatic necrosis virus in rainbow trout. Genomics (In Press).
Yoshida, GM, Lhorente, JP, Carvalheiro, R and Yáñez, JM 2017. Bayesian genome‐wide association analysis for body weight in farmed Atlantic salmon (Salmo salar L.). Animal Genetics 48, 698703.


Genetic (co)variation in skin pigmentation patterns and growth in rainbow trout

  • F. H. Rodríguez (a1) (a2), G. Cáceres (a1), J. P. Lhorente (a3), S. Newman (a4), R. Bangera (a5), T. Tadich (a1), R. Neira (a6) and J. M. Yáñez (a1) (a2) (a7)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed