Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-25T13:58:43.970Z Has data issue: false hasContentIssue false

Expression of key myogenic, fibrogenic and adipogenic genes in Longissimus thoracis and Masseter muscles in cattle

Published online by Cambridge University Press:  30 January 2020

L. Martínez del Pino
Affiliation:
IS-FOOD Institute; Escuela Técnica Superior de Ingenieros Agrónomos, Departamento de Agronomía, Biotecnología y Alimentación, Universidad Pública de Navarra, Pamplona, Spain
O. Urrutia
Affiliation:
IS-FOOD Institute; Escuela Técnica Superior de Ingenieros Agrónomos, Departamento de Agronomía, Biotecnología y Alimentación, Universidad Pública de Navarra, Pamplona, Spain
A. Arana
Affiliation:
IS-FOOD Institute; Escuela Técnica Superior de Ingenieros Agrónomos, Departamento de Agronomía, Biotecnología y Alimentación, Universidad Pública de Navarra, Pamplona, Spain
L. Alfonso
Affiliation:
IS-FOOD Institute; Escuela Técnica Superior de Ingenieros Agrónomos, Departamento de Agronomía, Biotecnología y Alimentación, Universidad Pública de Navarra, Pamplona, Spain
J. A. Mendizabal
Affiliation:
IS-FOOD Institute; Escuela Técnica Superior de Ingenieros Agrónomos, Departamento de Agronomía, Biotecnología y Alimentación, Universidad Pública de Navarra, Pamplona, Spain
B. Soret*
Affiliation:
IS-FOOD Institute; Escuela Técnica Superior de Ingenieros Agrónomos, Departamento de Agronomía, Biotecnología y Alimentación, Universidad Pública de Navarra, Pamplona, Spain
*
Get access

Abstract

Adipogenesis, myogenesis and fibrogenesis are related processes that can contribute to meat quality. Therefore, extending the knowledge of these processes would facilitate the identification of molecular markers that predict intramuscular fat accretion. The main purpose of this work, based on previous results, was to further study the expression of key genes related to adipogenic, myogenic, fibrogenic processes and some cytokines in Longissimus thoracis (LT) and Masseter (MS) muscles of Pirenaica and Holstein young bulls. Longissimus thoracis and MS muscles from Pirenaica (n = 4) and Spanish Holstein (n = 4) were sampled for proximate analysis, determination of adipocyte size distribution and expression of key candidate genes. Fat percentage was lower in LT than in MS muscle in Pirenaica young bulls (P = 0.023) and was higher in LT muscle in Holstein than in Pirenaica young bulls (P = 0.007). Gene expression analysis revealed that the mRNA level of myogenic differentiation 1 (MYOD) was higher in LT than in MS muscles in both groups of animals (P < 0.001) and that myostatin (MSTN) expression was also higher in LT than in MS muscle in Holstein bulls (P = 0.001). On the other hand, MSTN and PPARG showed higher expression in LT and MS in Pirenaica young bulls (P = 0.026), while the expression of fatty acid-binding protein 4 (FABP4) was higher in Holstein young bulls, also in both muscles (P < 0.001). The results suggested that the development of intramuscular adipose depot was directly related to the expression of adipogenic genes, such as FABP4, but inversely related to the expression of the cytokine MSTN and the myogenic gene MYOD, genes which showed a muscle-specific expression.

Type
Research Article
Copyright
© The Animal Consortium 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albertí, P, Gómez, I, Mendizabal, JA, Ripoll, G, Barahona, M, Sarriés, V, Insausti, K, Beriain, MJ, Purroy, A, Realini, C, Sarriés, MV, Insausti, K, Beriain, MJ, Purroy, A and Realini, C 2013. Effect of whole linseed and rumen-protected conjugated linoleic acid enriched diets on feedlot performance, carcass characteristics, and adipose tissue development in young Holstein bulls. Meat Science 94, 208214.10.1016/j.meatsci.2013.01.015CrossRefGoogle ScholarPubMed
Alfonso, L and Mendizabal, JA 2016. Caracterización de la distribución del tamaño de los adipocitos para el estudio del tejido adiposo en producción animal. ITEA 112, 147161.Google Scholar
Bass, J, Oldham, J, Sharma, M and Kambadur, R 1999. Growth factors controlling muscle development. Domestic Animal Endocrinology 17, 191197.10.1016/S0739-7240(99)00036-3CrossRefGoogle ScholarPubMed
Bergman, I and Loxley, R 1963. Two improved and simplified methods for the spectrophotometric determination of hydroxyproline. Analytical Chemistry 35, 19611965.10.1021/ac60205a053CrossRefGoogle Scholar
Chen, YW, Nagaraju, K, Bakay, M, McIntyre, O, Rawat, R, Shi, R and Hoffman, EP 2005. Early onset of inflammation and later involvement of TGFbeta in Duchenne muscular dystrophy. Neurology 65, 826834.10.1212/01.wnl.0000173836.09176.c4CrossRefGoogle ScholarPubMed
Council Directive 2008/119/EC (2008) Council Directive 2008/119/EC of 18 December 2008 laying down minimum standards for the protection of calves 2008. Official Journal of European Union L10, 713.Google Scholar
Council Directive 2010/63/EU (2010) Council Directive 2010/63/EU of the european parliament and of the council of 22 september 2010 on the protection of animals used for scientific purposes 2010. Official Journal of European Union L276, 3379.Google Scholar
Council Regulation (EC) No 1099/2009 (2009) Council Regulation (EC) No 1099/2009 of 24 September 2009 on the protection of animals at the time of killing 2009. Official Journal of European Union L303, 130.Google Scholar
Deng, B, Wen, J, Ding, Y, Gao, Q, Huang, H, Ran, Z, Qian, Y, Peng, J and Jiang, S 2012. Functional analysis of pig myostatin gene promoter with some adipogenesis- and myogenesis-related factors. Molecular and Cellular Biochemistry 363, 291299.CrossRefGoogle ScholarPubMed
Deng, B, Zhang, F, Wen, J, Ye, S, Wang, L, Yang, Y, Gong, P and Jiang, S 2017. The function of myostatin in the regulation of fat mass in mammals. Nutrition and Metabolism 14, 27.Google ScholarPubMed
Du, M, Huang, Y, Das, AK, Yang, Q, Duarte, MS, Dodson, MV and Zhu, M 2013. Meat science and muscle biology symposium: manipulating mesenchymal progenitor cell differentiation to optimize performance and carcass value of beef cattle. Journal of Animal Science 91, 14191427.CrossRefGoogle ScholarPubMed
Duarte, MS, Paulino, PVR, Das, AK, Wei, S, Serão, NVL, Fu, X, Harris, SM, Dodson, MV and Du, M 2013. Enhancement of adipogenesis and fibrogenesis in skeletal muscle of Wagyu compared with Angus cattle. Journal of Animal Science 91, 29382946.10.2527/jas.2012-5892CrossRefGoogle ScholarPubMed
Graugnard, DE, Piantoni, P, Bionaz, M, Berger, LL, Faulkner, DB and Loor, JJ 2009. Adipogenic and energy metabolism gene networks in longissimus lumborum during rapid post-weaning growth in Angus and Angus x Simmental cattle fed high-starch or low-starch diets. BMC Genomics 10, 142.CrossRefGoogle ScholarPubMed
Gu, H, Cao, Y, Qiu, B, Zhou, Z, Deng, R, Chen, Z, Li, R, Li, X, Wei, Q, Xia, X and Yong, W 2016. Establishment and phenotypic analysis of an Mstn knockout rat. Biochemical and Biophysical Research Communications 477, 115122.10.1016/j.bbrc.2016.06.030CrossRefGoogle ScholarPubMed
Guo, T, Jou, W, Chanturiya, T, Portas, J, Gavrilova, O and McPherron, AC 2009. Myostatin inhibition in muscle, but not adipose tissue, decreases fat mass and improves insulin sensitivity. PLoS ONE 4, 111.10.1371/journal.pone.0004937CrossRefGoogle Scholar
Gupta, RK, Mepani, RJ, Kleiner, S, Lo, JC, Khandekar, MJ, Cohen, P, Frontini, A, Bhowmick, DC, Ye, L, Cinti, S and Spiegelman, BM 2012. Zfp423 expression identifies committed preadipocytes and localizes to adipose. Cell Metabolism 15, 230239.CrossRefGoogle Scholar
Harris, CL, Wang, B, Deavila, JM, Busboom, JR, Maquivar, M, Parish, SM, Mccann, B, Nelson, ML and Du, M 2018. Vitamin A administration at birth promotes calf growth and intramuscular fat development in Angus beef cattle. Journal of Animal Science and Biotechnology 9, 19.10.1186/s40104-018-0268-7CrossRefGoogle ScholarPubMed
Hartigan, JA and Hartigan, PM 1985. The dip test of unimodality. Annals of Statistics 13, 7084.CrossRefGoogle Scholar
Hughes, SM, Koishi, K, Rudnicki, M and Maggs, AM 1997. MyoD protein is differentially accumulated in fast and slow skeletal muscle fibres and required for normal fibre type balance in rodents. Mechanisms of Development 61, 151163.10.1016/S0925-4773(96)00631-4CrossRefGoogle ScholarPubMed
Hughes, SM, Taylor, JM, Tapscott, SJ, Gurley, CM, Carter, WJ and Peterson, CA 1993. Selective accumulation of MyoD and myogenin mRNAs in fast and slow adult skeletal muscle is controlled by innervation and hormones. Development 118, 11371147.Google ScholarPubMed
Jeremiah, LE, Dugan, MER, Aalhus, JL and Gibson, LL 2003. Assessment of the relationship between chemical components and palatability of major beef muscles and muscle groups. Meat Science 65, 10131019.CrossRefGoogle ScholarPubMed
Ji, S, Losinski, RL, Cornelius, SG, Frank, GR, Willis, M, Gerrard, DE, Depreux, FF, and Spurlock, ME 1998. Myostatin expression in porcine tissues: tissue specificity and developmental and postnatal regulation. American Journal of Physiology 275, R1265R1273.Google ScholarPubMed
Jiang, H and Ge, X 2014. Meat science and muscle biology symposium – mechanism of growth hormone stimulation of skeletal muscle growth in cattle. Journal of Animal Science 92, 2129.10.2527/jas.2013-7095CrossRefGoogle ScholarPubMed
Kim, HS, Liang, L, Dean, RG, Hausman, DB, Hartzell, DL and Baile, CA 2001. Inhibition of preadipocyte differentiation by myostatin treatment in 3T3-L1 cultures. Biochemical and Biophysical Research Communications 281, 902906.10.1006/bbrc.2001.4435CrossRefGoogle ScholarPubMed
Kjeldahl, J 1883. New method for the determination of nitrogen in organic substances. Journal of Analytical Chemistry 22, 366382.Google Scholar
Kokta, TA, Dodson, MV, Gertler, A and Hill, RA 2004. Intercellular signaling between adipose tissue and muscle tissue. Domestic Animal Endocrinology 27, 303331.CrossRefGoogle ScholarPubMed
Langley, B, Thomas, M, Bishop, A, Sharma, M, Gilmour, S and Kambadur, R 2002. Myostatin inhibits myoblast differentiation by down-regulating MyoD expression. Journal of Biological Chemistry 277, 4983149840.CrossRefGoogle ScholarPubMed
Li, F, Li, Y, Duan, Y, Hu, CA, Tang, Y and Yin, Y 2017. Myokines and adipokines: involvement in the crosstalk between skeletal muscle and adipose tissue. Cytokine and Growth Factor Reviews 33, 7382.CrossRefGoogle ScholarPubMed
Martínez Del Pino, L, Arana, A, Alfonso, L, Mendizábal, JA and Soret, B 2017. Adiposity and adipogenic gene expression in four different muscles in beef cattle. PLoS ONE 12, 119.CrossRefGoogle ScholarPubMed
McPherron, AC and Lee, S-J 1997. Double muscling in cattle due to mutations in the myostatin gene. Proceedings of the National Academy of Sciences 94, 1245712461.CrossRefGoogle ScholarPubMed
Moisá, SJ, Shike, DW, Faulkner, DB, Meteer, WT, Keisler, D and Loor, JJ 2014. Central role of the PPARγ gene network in coordinating beef cattle intramuscular adipogenesis in response to weaning age and nutrition. Gene Regulation and Systems Biology 8, 1732.10.4137/GRSB.S11782CrossRefGoogle ScholarPubMed
Muroya, S, Nakajima, I and Chikuni, K 2002. Related expression of MyoD and Myf5 with myosin heavy chain isoform types in bovine adult skeletal muscles. Zoological Science 19, 755761.10.2108/zsj.19.755CrossRefGoogle ScholarPubMed
Pickworth, CL, Loerch, SC, Velleman, SG, Pate, JL, Poole, DH and Fluharty, FL 2011. Adipogenic differentiation state-specific gene expression as related to bovine carcass adiposity. Journal of Animal Science 89, 355366.CrossRefGoogle ScholarPubMed
Rasmussen, R 2001. Quantification on the light cycler. In Rapid cycle real-time PCR: methods and applications (ed. Meuer, S., Wittwer, C. and Nakagawara, K.), pp. 2134. Springer, Heidelberg, Germany.CrossRefGoogle Scholar
Roberts, SL, Lancaster, A, Horn, GW, Krehbiel, R, Lancaster, PA, Desilva, U, Horn, GW and Krehbiel, CR 2015. Coordinated gene expression between skeletal muscle and intramuscular adipose tissue in growing beef cattle. Journal of Animal Science 93, 43024311.CrossRefGoogle ScholarPubMed
Spiller, MP, Kambadur, R, Jeanplong, F, Thomas, M, Martyn, JK, Bass, JJ and Sharma, M 2002. The myostatin gene is a downstream target gene of basic Helix-Loop-Helix transcription factor MyoD. Molecular and Cellular Biology 22, 70667082.10.1128/MCB.22.20.7066-7082.2002CrossRefGoogle ScholarPubMed
Steibel, JP, Poletto, R, Coussens, PM and Rosa, GJM 2009. A powerful and flexible linear mixed model framework for the analysis of relative quantification RT-PCR data. Genomics 94, 146152.10.1016/j.ygeno.2009.04.008CrossRefGoogle ScholarPubMed
Wang, YH, Bower, NI, Reverter, A, Tan, SH, De Jager, N, Wang, R, McWilliam, SM, Cafe, LM, Greenwood, PL and Lehnert, SA 2009. Gene expression patterns during intramuscular fat development in cattle. Journal of Animal Science 87, 119130.10.2527/jas.2008-1082CrossRefGoogle ScholarPubMed
Wehling, M, Cai, B and Tidball, JG 2000. Modulation of myostatin expression during modified muscle use. The FASEB Journal 14:103110.10.1096/fasebj.14.1.103CrossRefGoogle ScholarPubMed
Xie, F, Xiao, P, Chen, D, Xu, L and Zhang, B 2012. miRDeepFinder: a miRNA analysis tool for deep sequencing of plant small RNAs. Plant Molecular Biology 80, 7584.10.1007/s11103-012-9885-2CrossRefGoogle Scholar
Supplementary material: File

Martínez del Pino et al. Supplementary Materials

Martínez del Pino et al. Supplementary Materials

Download Martínez del Pino et al. Supplementary Materials(File)
File 66.3 KB