Skip to main content Accessibility help
×
Home

Energy balance of individual cows can be estimated in real-time on farm using frequent liveweight measures even in the absence of body condition score

  • V. M. Thorup (a1), S. Højsgaard (a2), M. R. Weisbjerg (a1) and N. C. Friggens (a3) (a4)

Abstract

Existing methods for estimating individual dairy cow energy balance typically either need information on feed intake, that is, the traditional input–output method, or frequent measurements of BW and body condition score (BCS), that is, the body reserve changes method (EBbody). The EBbody method holds the advantage of not requiring measurements of feed intake, which are difficult to obtain in practice. The present study aimed first to investigate whether the EBbody method can be simplified by basing EBbody on BW measurements alone, that is, removing the need for BCS measurements, and second to adapt the EBbody method for real-time use, thus turning it into a true on-farm tool. Data came from 77 cows (primiparous or multiparous, Danish Holstein, Red or Jersey) that took part in an experiment subjecting them to a planned change in concentrate intake during milking. BW was measured automatically during each milking and real-time smoothed using asymmetric double-exponential weighting and corrected for the weight of milk produced, gutfill and the growing conceptus. BCS assessed visually with 2-week intervals was also smoothed. EBbody was calculated from BW changes only, and in conjunction with BCS changes. A comparison of the increase in empty body weight (EBW) estimated from EBbody with EBW measured over the first 240 days in milk (DIM) for the mature cows showed that EBbody was robust to changes in the BCS coefficients, allowing functions for standard body protein change relative to DIM to be developed for breeds and parities. These standard body protein change functions allow EBbody to be estimated from frequent BW measurements alone, that is, in the absence of BCS measurements. Differences in EBbody levels before and after changes in concentrate intake were calculated to test the real-time functionality of the EBbody method. Results showed that significant EBbody increases could be detected 10 days after a 0.2 kg/day increase in concentrate intake. In conclusion, a real-time method for deriving EBbody from frequent BW measures either alone or in conjunction with BCS measures has been developed. This extends the applicability of the EBbody method, because real-time measures can be used for decision support and early intervention.

Copyright

Corresponding author

References

Hide All
Bossen, D, Weisbjerg, MR, Munksgaard, L, Højsgaard, S 2009. Allocation of feed based on individual dairy cow live weight changes I: feed intake and live weight changes during lactation. Livestock Science 126, 252272.
Coffey, MP, Emmans, GC, Brotherstone, S 2001. Genetic evaluation of dairy bulls for energy balance traits using random regression. Animal Science 73, 2940.
Collard, BL, Boettcher, PJ, Dekkers, JCM, Petitclerc, D, Schaeffer, LR 2000. Relationships between energy balance and health traits of dairy cattle in early lactation. Journal of Dairy Science 83, 26832690.
Cutullic, E, Delaby, L, Gallard, Y, Disenhaus, C 2012. Towards a better understanding of the respective effects of milk yield and body condition dynamics on reproduction in Holstein dairy cows. Animal 6, 476487.
Emmans, GC 1994. Effective energy: a concept of energy utilization applied across species. British Journal of Nutrition 71, 801821.
Ferguson, JD, Galligan, DT, Thomsen, N 1994. Principal descriptors of body condition score in Holstein cows. Journal of Dairy Science 77, 26952703.
Friggens, NC, Berg, P, Theilgaard, P, Korsgaard, IR, Ingvartsen, KL, Løvendahl, P, Jensen, J 2007a. Breed and parity effects on energy balance profiles through lactation: evidence of genetically driven body energy change. Journal of Dairy Science 90, 52915305.
Friggens, NC, Ridder, C, Løvendahl, P 2007b. On the use of milk composition measures to predict the energy balance of dairy cows. Journal of Dairy Science 90, 54535467.
Gibb, MJ, Ivings, WE 1993. A note on the estimation of the body-fat, protein and energy content of lactating Holstein-Friesian cows by measurement of condition score and live weight. Animal Production 56, 281283.
Goff, JP, Horst, RL 1997. Physiological changes at parturition and their relationship to metabolic disorders. Journal of Dairy Science 80, 12601268.
Hüttmann, H, Stamer, E, Junge, W, Thaller, G, Kalm, E 2009. Analysis of feed intake and energy balance of high-yielding first lactating Holstein cows with fixed and random regression models. Animal 3, 181188.
Martin, O, Sauvant, D 2010a. A teleonomic model describing performance (body, milk and intake) during growth and over repeated reproductive cycles throughout the lifespan of dairy cattle. 1. Trajectories of life function priorities and genetic scaling. Animal 4, 20302047.
Martin, O, Sauvant, D 2010b. A teleonomic model describing performance (body, milk and intake) during growth and over repeated reproductive cycles throughout the lifespan of dairy cattle. 2. Voluntary intake and energy partitioning. Animal 4, 20482056.
Oikonomou, G, Arsenos, G, Valergakis, GE, Tsiaras, A, Zygoyiannis, D, Banos, G 2008. Genetic relationship of body energy and blood metabolites with reproduction in Holstein cows. Journal of Dairy Science 91, 43234332.
R Development Core Team 2011. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
Thorup, VM, Edwards, D, Friggens, NC 2012. On-farm estimation of energy balance in dairy cows using only frequent body weight measurements and body condition score. Journal of Dairy Science 95, 17841793.
Weisbjerg, MR, Hvelplund, T 1993. Estimation of net energy content (FU) in feeds for cattle (in Danish). Research Report no. 3, National Institute of Animal Science, Denmark, 3–39 pp.
Weisbjerg, MR, Munksgaard, L 2008. Concentrate feed strategies in an AMS system (in Danish). In Feeding the dairy cow, Internal report no. 8, Aarhus University AU-Foulum, Denmark, 21–30 pp.
Wright, IA, Russel, AJF 1984. Partition of fat, body-composition and body condition score in mature cows. Animal Production 38, 2332.

Keywords

Type Description Title
UNKNOWN
Supplementary materials

Thorup Supplementary Material
Appendix

 Unknown (292 KB)
292 KB

Energy balance of individual cows can be estimated in real-time on farm using frequent liveweight measures even in the absence of body condition score

  • V. M. Thorup (a1), S. Højsgaard (a2), M. R. Weisbjerg (a1) and N. C. Friggens (a3) (a4)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed