Skip to main content Accessibility help
×
Home

Consequences of dietary calcium and phosphorus depletion and repletion feeding sequences on growth performance and body composition of growing pigs

  • E. Gonzalo (a1) (a2), M. P. Létourneau-Montminy (a1), A. Narcy (a3), J. F. Bernier (a1) and C. Pomar (a2)...

Abstract

The effect of a calcium (Ca) and phosphorus (P) depletion and repletion strategy was studied in four consecutive feeding phases of 28 days each. In all, 60 castrated male pigs (14±1.6 kg initial BW) received 60% (low (L) diet; depletion) or 100% (control (C) diet; repletion) of their Ca and digestible P requirements according to six feeding sequences (CCCC, CCCL, CLCC, CCLC, LCLC and LLLL; subsequent letters indicate the diet received in phases 1, 2, 3 and 4, respectively). Pigs bone mineral content in whole-body (BMCb) and lumbar vertebrae L2 to L4 (BMCv) was measured in every feeding phase by dual-energy X-ray absorptiometry. Growth performance was slightly (<10%) affected by depletion, however, dietary treatments did not affect overall growth. Compared with control pigs, depletion reduced BMCb (34%, 38%, 33% and 22%) and BMCv (46%, 54%, 38% and 26%) in phases 1 to 4, respectively. Depletion increased however digestible P retention efficiency from the second to the fourth phases allowing LLLL pigs to present no differences in BMCb and BMCv gain compared with CCCC pigs in phase 4. Growth performance in repleted compared with control pigs was lower in phase 2, was no different in phase 3 and was lower in CLCC pigs in phase 4. Repletion increased body P and Ca retention efficiency when compared with control pigs (respectively, 8% and 10% for LC v. CC, P<0.01; 8% and 10% for CLC v. CCC, P<0.10; 18% and 25% for CLCC, CCLC, LCLC v. CCCC, P<0.001). Moreover, BMCv gain was higher in CLC pigs (P<0.001) and gains of body P, Ca, BMCb and BMCv in phase 4 were also higher in repleted than in CCCC pigs (respectively, 14%, 20%, 20% and 52%; P⩽0.02). Repletion reduced body P, Ca, BMCb and BMCv masses in phase 2 but no differences were found in phase 4 compared with control pigs. Lumbar vertebrae L2 to L4 bone mineral content was more sensitive to depletion and repletion sequences than BMCb especially in the first phase probably due to a higher proportion of metabolically active trabecular bone in vertebrae than in the whole skeleton. Dietary Ca was, however, oversupply in L compared with C diets (3.1 v. 2.5 Ca:digestible P ratio, respectively) suggesting that P has probably driven the regulations. Phosphorus and Ca depletion and repletion increases dietary P utilization efficiency and can help to reduce dietary P supply, but the underlying mechanisms need elucidation before its practical application.

Copyright

Corresponding author

References

Hide All
Agriculture and Agri-Food Canada 2012. Recommended code of practice for the care and handling of farm animals: Pigs. AAFC Publication, Ottawa, Ontario, Canada.
Aiyangar, AK, Au, AG, Crenshaw, TD and Ploeg, HL 2010. Recovery of bone strength in young pigs from an induced short-term dietary calcium deficit followed by a calcium replete diet. Medical Engineering and Physics 32, 11161123.
Alexander, LS, Qu, A, Cutler, SA, Mahajan, A, Lonergan, SR, Rothschild, MF, Weber, TE, Kerr, BJ and Stahl, CH 2008. Response to dietary phosphorus deficiency is affected by genetic background in growing pigs. Journal of Animal Science 86, 25852595.
Association of Official Analytical Chemists 1990. Official methods of analysis, 15th edition. AOAC, Arlington, VA, USA.
Brautbar, N, Lee, DN, Coburn, JW and Kleeman, CR 1979. Normophosphatemic phosphate depletion in growing rat. American Journal of Physiology 236, 283288.
Bullock, J, Boyle, J and Wang, MB 2001. NMS physiology Volume 578, 4th edition. Lippincott Williams & Wilkins, Philadelphia, PA, USA.
Canadian Council of Animal Care 2009. CCAC guidelines on: the care and use of farm animals in research, teaching and testing. CCAC, Ottawa, Ontario, Canada.
Clarke, B 2008. Normal bone anatomy and physiology. Clinical Journal of the American Society of Nephrology 3, 131139.
Cordell, D, Drangert, JO and White, S 2009. The story of phosphorus: global food security and food for thought. Global Environmental Change 19, 292305.
Crenshaw, TD 2001. Calcium, phosphorus, vitamin D, and vitamin K in swine nutrition. In Swine nutrition, 2nd edition (ed. AJ Lewis and LL Southern), pp. 187212. CRC Press, Boca Raton, FL, USA.
Dritz, SS, Tokach, MD, Sargeant, JM, Goodband, RD and Nelssen, JL 2000. Lowering dietary phosphorus results in a loss in carcass value but not decreased growth performance. Swine Health and Production 8, 121124.
Ekpe, ED, Zijlstra, RT and Patience, JF 2002. Digestible phosphorus requirement of grower pigs. Canadian Journal of Animal Science 82, 541549.
Gutzwiller, A, Hess, HD, Adam, A, Guggisberg, D, Liesegang, A and Stoll, P 2011. Effects of a reduced calcium, phosphorus and protein intake and of benzoic acid on calcium and phosphorus metabolism of growing pigs. Animal Feed Science and Technology 168, 113121.
Jondreville, C and Dourmad, JY 2005. Le phosphore dans la nutrition des porcs. INRA Productions Animales 18, 183192.
Kim, C and Park, D 2013. The effect of restriction of dietary calcium on trabecular and cortical bone mineral density in the rats. Journal of Exercise Nutrition & Biochemistry 17, 123131.
Létourneau-Montminy, MP, Jondreville, C, Sauvant, D and Narcy, A 2012. Meta-analysis of phosphorus utilization by growing pigs: effect of dietary phosphorus, calcium and exogenous phytase. Animal 6, 15901600.
Létourneau-Montminy, MP, Lovatto, PA and Pomar, C 2014. Apparent total tract digestibility of dietary calcium and phosphorus and their efficiency in bone mineral retention are affected by body mineral status in growing pigs. Journal of Animal Science 92, 39143924.
Létourneau-Montminy, MP, Narcy, A, Dourmad, JY, Crenshaw, TD and Pomar, C 2015. Modeling the metabolic fate of dietary phosphorus and calcium and the dynamics of body ash content in growing pigs. Journal of Animal Science 93, 12001217.
Nielsen, AJ 1973. Anatomical and chemical composition of Danish Landrace pigs slaughtered at 90 kilograms live weight in relation to litter, sex and feed composition. Journal of Animal Science 36, 476483.
National Research Council 2012. Nutrient requirements of swine. National Academy Press, Washington, DC, USA.
Ryan, WF, Lynch, PB and O’Doherty, JV 2011. Compensatory effect of dietary phosphorus on performance of growing pigs and development of bone mineral density assessed using dual energy X-ray absorptiometry. Livestock Science 138, 8995.
Saddoris, KL, Fleet, JC and Radcliffe, JS 2010. Sodium-dependent phosphate uptake in the jejunum is post-transcriptionally regulated in pigs fed a low-phosphorus diet and is independent of dietary calcium concentration. Journal of Nutrition 140, 731736.
Sauvant, D, Perez, JM and Tran, G 2004. Tables de composition et de valeur nutritive des matières premières destinées aux animaux d’élevage: Porcs, volailles, bovins, ovins, caprins, lapins, chevaux, poissons. Éditions INRA, Paris, France.
Schanler, RJ, Abrams, SA and Sheng, HP 1991. Calcium and phosphorus deficiencies affect mineral distribution in neonatal miniature piglets. The American Journal of Clinical Nutrition 54, 420424.
Schröder, B, Breves, G and Rodehutscord, M 1996. Mechanisms of intestinal phosphorus absorption and availability of dietary phosphorus in pigs. Deutsche Tierärztliche Wochenschrift 103, 209214.
Suttle, NF 2010. Mineral nutrition of livestock, 4th edition. CABI Publishing, Wallingford, Oxfordshire, UK.
Underwood, EJ and Mertz, W 1987. Introduction. In Trace elements in human and animal nutrition, 5th revised edition (ed. W Mertz), pp. 119. Academic Press, New York, NY, USA.
Varley, PF, Sweeney, T, Ryan, MT and O’Doherty, JV 2011. The effect of phosphorus restriction during the weaner-grower phase on compensatory growth, serum osteocalcin and bone mineralization in gilts. Livestock Science 135, 282288.
Xu, H, Bai, L, Collins, JF and Ghishan, FK 2002. Age-dependent regulation of rat intestinal type IIb sodium-phosphate cotransporter by 1,25-(OH)2 vitamin D3 . American Journal Physiology and Cellular Physiology 282, C487C493.

Keywords

Consequences of dietary calcium and phosphorus depletion and repletion feeding sequences on growth performance and body composition of growing pigs

  • E. Gonzalo (a1) (a2), M. P. Létourneau-Montminy (a1), A. Narcy (a3), J. F. Bernier (a1) and C. Pomar (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed