Skip to main content Accessibility help
×
Home

Associations between strain, herd size, age at first calving, culling reason and lifetime performance characteristics in Holstein-Friesian cows

  • K. Adamczyk (a1), J. Makulska (a1), W. Jagusiak (a2) and A. Węglarz (a1)

Abstract

Cow longevity and lifetime performance traits are good indicators of breeding effectiveness and animal welfare. They are also interrelated with the economics of dairy herd. Unfortunately, a high milk yield is often associated with deteriorated cow health and fertility and, consequently, with an increased culling rate. This situation, observed also in the Polish population of Holstein-Friesian cattle, inspired us to undertake a study on the associations between some factors and lifetime performance characteristics. The data set consisted of the records on 135 496 cows, including 131 526 of the Black and White strain (BW), and 3970 of the Red and White strain (RW) covered by performance recording and culled in 2012. It was found that cows of the BW strain and those from the largest herds (>100 cows) reached higher lifetime and mean daily energy-corrected milk (ECM) yields than cows of the RW strain and those from smaller herds culled at a similar age. Cows youngest at first calving (<2.0 years) were characterised by the highest lifetime ECM yield. It indicates that heifers can be bred even when they are younger than 15 to 16 months with no significant negative effect on their later performance. Infertility and reproduction problems (39.6%) and udder diseases (15.5%) constituted the most frequent reasons for cow culling. Cow longevity and lifetime productivity were considerably affected by the interactions between the studied factors.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Associations between strain, herd size, age at first calving, culling reason and lifetime performance characteristics in Holstein-Friesian cows
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Associations between strain, herd size, age at first calving, culling reason and lifetime performance characteristics in Holstein-Friesian cows
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Associations between strain, herd size, age at first calving, culling reason and lifetime performance characteristics in Holstein-Friesian cows
      Available formats
      ×

Copyright

Corresponding author

E-mail: rzadamcz@cyfronet.pl

References

Hide All
Ahlman, T, Berglund, B, Rydhmer, L and Strandberg, E 2011. Culling reasons in organic and conventional dairy herds and genotype by environment interaction for longevity. Journal of Dairy Science 94, 15681575.
Axelsson, HH 2013. Breeding for sustainable milk – production from nucleus herds to genomic data. PhD thesis, Swedish University of Agricultural Sciences, Uppsala, Sweden.
Blöttner, S, Heins, BJ, Wensch-Dorendorf, M, Hansen, LB and Swalve, HH 2011. Brown Swiss×Holstein crossbreds compared with pure Holsteins for calving traits, body weight, backfat thickness, fertility, and body measurements. Journal of Dairy Science 94, 10581068.
Cha, E, Hertl, JA, Bar, D and Gröhn, YT 2010. The cost of different types of lameness in dairy cows calculated by dynamic programming. Preventive Veterinary Medicine 97, 18.
Coffey, MP, Hickey, J and Brotherstone, S 2006. Genetic aspects of growth of Holstein-Friesian dairy cows from birth to maturity. Journal of Dairy Science 89, 322329.
Curran, RD, Weigel, KA, Hoffman, PC, Marshall, JA, Kuzdas, CK and Coblentz, WK 2013. Relationships between age at first calving; herd management criteria; and lifetime milk, fat, and protein production in Holstein cattle. The Professional Animal Scientist 29, 19.
De Vries, A 2013. Cow longevity economics: the cost benefit of keeping the cow in the herd. Proceedings of the Conference ‘Cow Longevity Conference’, 28–29 August, Hamra Farm/Tumba, Sweden, pp. 22–52.
Hadley, GL, Wolf, CA and Harsh, SB 2006. Dairy cattle culling patterns, explanations, and implications. Journal of Dairy Science 89, 22862296.
Heinrichs, AJ and Heinrichs, BS 2011. A prospective study of calf factors affecting first-lactation and lifetime milk production and age of cows when removed from the herd. Journal of Dairy Science 94, 336341.
Heins, BJ, Hansen, LB and Seykora, AJ 2006. Production of pure Holsteins versus crossbreds of Holstein with Normande, Montbeliarde, and Scandinavian Red. Journal of Dairy Science 89, 27992804.
International Committee for Animal Recording 2012. International agreement of recording practices. Retrieved on 5 May 2013 from http://www.icar.org.
Jankowska, M, Sawa, A and Kujawska, J 2014. Effect of certain factors on the longevity and culling of cows. Acta Scientiarum Polonorum Zootechnica 13, 1930.
Kristensen, AR 1989. Optimal replacement and ranking of dairy cows under milk quotas. Acta Agriculturae Scandinavica 39, 311318.
Miglior, F, Muir, BL and Van Doormaal, BJ 2005. Selection indices in Holstein cattle of various countries. Journal of Dairy Science 88, 12551263.
Monti, G, Tenhagen, B-A and Heuwieser, W 1999. Culling policies in dairy herds. A review. Journal of Veterinary Medicine Series A 46, 111.
Mourits, MCM, Huirne, RBM, Dijkhuizen, AA, Kristensen, AR and Galligan, DT 1999. Economic optimization of dairy heifer management decisions. Agricultural Systems 61, 1731.
Nienartowicz-Zdrojewska, A, Różańska-Zawieja, J, Dymarski, I, Konieczka, A and Sobek, Z 2012. Analysis of productivity, longevity and culling causes of Jersey and Polish Holstein-Friesian (PHF) cows. African Journal of Biotechnology 11, 1411014115.
Nor, NM, Steeneveld, W, Mourits, MCM and Hogeveen, H 2015. The optimal number of heifer calves to be reared as dairy replacements. Journal of Dairy Science 98, 861871.
Oler, A, Sawa, A, Urbańska, P and Wojtkowiak, M 2012. Analysis of longevity and reasons for culling high yielding cows. Acta Scientiarum Polonorum Zootechnica 11, 5764.
Oltenacu, PA and Broom, DM 2010. The impact of genetic selection for increased milk yield on the welfare of dairy cows. Animal Welfare 19 (suppl.), 3949.
Polish Federation of Cattle Breeders and Dairy Farmers in Warsaw (PFCBDF) 2015. Wyniki oceny wartości użytkowej krów mlecznych. Retrieved on 21 December 2015 from http://www.pfhb.pl/.
Pritchard, T, Coffey, M, Mrode, R and Wall, E 2013. Genetic parameters for production, health, fertility and longevity traits in dairy cows. Animal 7, 3446.
Roche, JR 2006. The effect of nutritional management of the dairy cow on reproductive efficiency. Animal Reproduction Science 96, 282296.
Royal Society for the Prevention of Cruelty to Animals 2011. RSPCA welfare standards for dairy cattle. Retrieved on 12 April 2016 from http://www.rspca.org.uk.
Rushen, J and de Passillé, AM 2013. The importance of improving cow longevity. Proceedings of the Conference ‘Cow Longevity Conference’, 28–29 August, Hamra Farm/Tumba, Sweden, pp. 3–21.
SAS Institute Inc. 2008. SAS/STAT® 9.2 User’s Guide. SAS® Publishing, Cary, NC, USA.
Sawa, A and Bogucki, M 2010. Effect of some factors on cow longevity. Archiv Tierzucht 53, 403414.
Sawa, A and Krężel-Czopek, S 2009. Effect of first lactation milk yield on efficiency of cows in herds with different production levels. Archiv Tierzucht 52, 714.
Sjaunja, LO, Baevre, L, Junkkarinen, L, Pedersen, J and Setala, J 1990. A Nordic proposal for an energy corrected milk (ECM) formula. Proceedings of the 27th Biennial Session of the International Committee for Animal Recording (ICAR), 2–6 . July, Paris, France, pp. 156–192.
Sørensen, MK, Norberg, E, Pedersen, J and Christensen, LG 2008. Invited review: crossbreeding in dairy cattle: a Danish perspective. Journal of Dairy Science 91, 41164128.
Thornton, PK 2010. Livestock production: recent trends, future prospects. Philosophical Transactions of the Royal Society B 365, 28532867.
Zavadilová, L and Štípková, M 2013. Effect of age at first calving on longevity and fertility traits for Holstein cattle. Czech Journal of Animal Science 58, 4757.
Zavadilová, L and Zink, V 2013. Genetic relationship of functional longevity with female fertility and milk production traits in Czech Holsteins. Czech Journal of Animal Science 58, 554565.

Keywords

Type Description Title
WORD
Supplementary materials

Adamczyk supplementary material
Table S1

 Word (172 KB)
172 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed