Skip to main content Accessibility help
×
Home

Amino acid utilization and body composition of growing pigs fed processed soybean meal or rapeseed meal with or without amino acid supplementation

  • T. G. Hulshof (a1) (a2), A. F. B. van der Poel (a2), W. H. Hendriks (a2) and P. Bikker (a1)

Abstract

Feed ingredients used in swine diets are often processed to improve nutritional value. However, (over-)processing may result in chemical reactions with amino acids (AAs) that decrease their ileal digestibility. This study aimed to determine effects of (over-)processing of soybean meal (SBM) and rapeseed meal (RSM) on post-absorptive utilization of ileal digestible AAs for retention and on body AA composition of growing pigs. Soybean meal and RSM were processed by secondary toasting in the presence of lignosulfonate to obtain processed soybean meal (pSBM) and processed rapeseed meal (pRSM). Four diets contained SBM, pSBM, RSM or pRSM as sole protein source. Two additional diets contained pSBM or pRSM and were supplemented with crystalline AA to similar standardized ileal digestible (SID) AA level as the SBM or RSM diet. These diets were used to verify that processing affected AA retention by affecting ileal AA digestibility rather than post-absorptive AA utilization. The SID AA levels of the protein sources were determined in a previous study. In total, 59 pigs were used (initial BW of 15.6±0.7 kg) of which five were used to determine initial body composition at the start of the experiment. In total, 54 pigs were fed one of six experimental diets and were slaughtered at a BW of 40 kg. The organ fraction (i.e. empty organs plus blood) and carcass were analyzed separately for N and AA content. Post-absorptive AA utilization was calculated from AA retention and SID AA intake. An interaction between diet type, comprising effects of processing and supplementing crystalline AA, and protein source was observed for CP content in the organ fraction, carcass and empty body and for nutrient retention. Processing reduced CP content and nutrient retention more for SBM than for RSM. Moreover, processing reduced (P<0.001) the lysine content in the organ fraction for both protein sources. Supplementing crystalline AA ameliorated the effect of processing on these variables. Thus, the data indicated that processing affected retention by reducing digestibility. Correcting AA retention for SID AA intake was, therefore, expected to result in similar post-absorptive AA utilization which was observed for the RSM diets. However, post-absorptive AA utilization was lower for the pSBM diet than for the SBM diet which might be related to an imbalanced post-absorptive AA supply. In conclusion, processing negatively affected nutrient retention for both protein sources and post-absorptive utilization of SID AA for retention for SBM. Effects of processing were compensated by supplementing crystalline AA.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Amino acid utilization and body composition of growing pigs fed processed soybean meal or rapeseed meal with or without amino acid supplementation
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Amino acid utilization and body composition of growing pigs fed processed soybean meal or rapeseed meal with or without amino acid supplementation
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Amino acid utilization and body composition of growing pigs fed processed soybean meal or rapeseed meal with or without amino acid supplementation
      Available formats
      ×

Copyright

Corresponding author

E-mail: paul.bikker@wur.nl

References

Hide All
Agricultural Research Council 1981. The nutrient requirements of pigs. Commonwealth Agricultural Bureaux, Slough, England. 16pp.
Almeida, FN, Htoo, JK, Thomson, J and Stein, HH 2014. Effects of heat treatment on the apparent and standardized ileal digestibility of amino acids in canola meal fed to growing pigs. Animal Feed Science Technology 187, 4452.
Batterham, ES 1992. Availability and utilization of amino acids for growing pigs. Nutrition Research Reviews 5, 118.
Batterham, ES, Andersen, LM, Baigent, DR, Darnell, RE and Taverner, MR 1990b. A comparison of the availability and ileal digestibility of lysine in cottonseed and soya-bean meals for grower/finisher pigs. British Journal of Nutrition 64, 663677.
Batterham, ES, Andersen, LM, Baigent, DR and White, E 1990a. Utilization of ileal digestible amino acids by growing pigs: effect of dietary lysine concentration on efficiency of lysine retention. British Journal of Nutrition 64, 8194.
Berg, JM, Tymoczko, JL and Stryer, L 2002. Biochemistry, 5th edition. W.H. Freeman and Company, New York, NY, USA.
Bikker, P, Verstegen, MWA and Bosch, MW 1994. Amino acid composition of growing pigs is affected by protein and energy intake. Journal of Nutrition 124, 19611969.
Centraal Veevoeder Bureau (CVB) 2011. Feeding of pigs: feeding standard, feeding advices and nutritional values of feeding ingredients. Centraal Veevoeder Bureau series no. 43. Product Board Animal Feed, Lelystad, The Netherlands, 25pp.
Chung, TK and Baker, DH 1992. Efficiency of dietary methionine utilization by young pigs. Journal of Nutrition 122, 18621869.
Conde-Aguilera, JA, Barea, R, Le Floc’h, N, Lefaucheur, L and Van Milgen, J 2010. A sulfur amino acid deficiency changes the amino acid composition of body protein in piglets. Animal 4, 13491358.
Fuller, MF 1991. Present knowledge of amino acid requirements for maintenance and production: non-ruminants. Proceedings of the 6th International Symposium on Protein Metabolism and Nutrition, 9–14 June 1991, Herning, Denmark, pp. 116–126.
Gloaguen, M, Le Floc’h, N and Van Milgen, J 2013. Couverture des besoins en acides aminés chez le porcelet alimenté avec des régimens à basse teneur en protéines. INRA Productions Animales 26, 277288.
González-Vega, JC, Kim, BG, Htoo, JK, Lemme, A and Stein, HH 2011. Amino acid digestibility in heated soybean meal fed to growing pigs. Journal of Animal Science 89, 36173625.
Heger, J, Van Phung, T and Křížová, L 2002. Efficiency of amino acid utilization in the growing pig at suboptimal levels of intake: lysine, threonine, sulphur amino acids and tryptophan. Journal of Animal Physiology and Animal Nutrition 86, 153165.
Hulshof, TG, Bikker, P, Van der Poel, AFB and Hendriks, WH 2016a. Assessment of protein quality of soybean meal and 00-rapeseed meal toasted in the presence of lignosulfonate by amino acid digestibility in growing pigs and Maillard reaction products. Journal of Animal Science 94, 10201030.
Hulshof, TG, Van der Poel, AFB, Hendriks, WH and Bikker, P 2016b. Processing of soybean meal and 00-rapeseed meal reduces protein digestibility and pig growth performance but does not affect nitrogen solubilization along the small intestine. Journal of Animal Science 94, 24032414.
Hurrell, RF and Carpenter, KJ 1981. The estimation of available lysine in foodstuffs after Maillard reactions. Progress in Food and Nutrition Science 5, 159176.
International Organization for Standardization (ISO) 1999. ISO 6492:1999. Animal feeding stuffs – determination of fat content. ISO, Geneva, Switzerland.
International Organization for Standardization (ISO) 2002. ISO 5984:2002. Animal feeding stuffs – determination of crude ash content. ISO, Geneva, Switzerland.
International Organization for Standardization (ISO) 2005a. ISO 5983-1:2005. Animal feeding stuffs – determination of nitrogen content and calculation of crude protein content – part 1: Kjeldahl method. ISO, Geneva, Switzerland.
International Organization for Standardization (ISO) 2005b. ISO 13903:2005. Animal feeding stuffs – determination of amino acids content. ISO, Geneva, Switzerland.
International Organization for Standardization (ISO) 2005c. ISO 13904:2005. Animal feeding stuffs – determination of tryptophan content. ISO, Geneva, Switzerland.
Kyriazakis, I, Emmans, GC and McDaniel, R 1993. Whole body amino acid composition of the growing pig. Journal of the Science of Food and Agriculture 62, 2933.
Lenis, NP, Van Diepen, HTM, Bikker, P, Jongbloed, AW and Van Der Meulen, J 1999. Effect of the ratio between essential and nonessential amino acids in the diet on utilization of nitrogen and amino acids by growing pigs. Journal of Animal Science 77, 17771787.
Moughan, PJ, Gall, MPJ and Rutherfurd, SM 1996. Absorption of lysine and deoxyketosyllysine in an early-Maillard browned casein by the growing pig. Journal of Agricultural and Food Chemistry 44, 15201525.
Moughan, PJ and Rutherfurd, SM 2008. Available lysine in foods: a brief historical overview. Journal of AOAC International 91, 901906.
Rérat, A, Calmes, R, Vaissade, P and Finot, PA 2002. Nutritional and metabolic consequences of the early Maillard reaction of heat treated milk in the pig. Significance for man. European Journal of Nutrition 41, 111.
Van Barneveld, RJ, Batterham, ES and Norton, BW 1994a. The effect of heat on amino acids for growing pigs: 1 – a comparison of ileal and faecal digestibilities of amino acids in raw and heat-treated field peas (Pisum sativum cultivar Dundale). British Journal of Nutrition 72, 221241.
Van Barneveld, RJ, Batterham, ES and Norton, BW 1994b. The effect of heat on amino acids for growing pigs: 2 – utilization of ileal-digestible lysine from heat-treated field peas (Pisum sativum cultivar Dundale). British Journal of Nutrition 72, 243256.
Van Milgen, J, Valancogne, A, Dubois, S, Dourmad, J-Y, Sève, B and Noblet, J 2008. InraPorc: a model and decision support tool for the nutrition of growing pigs. Animal Feed Science and Technology 143, 387405.
Wiseman, J, Jagger, S, Cole, DJA and Haresign, W 1991. The digestion and utilization of amino acids of heat-treated fish meal by growing/finishing pigs. Animal Production 53, 215225.
Wünsche, J, Borgmann, E, Hennig, U, Kreienbring, F and Bock, H-D 1983. Einfluβ einer abgestuften Proteinversorgung bei hohem Energieniveau auf die Mastleitung sowie den Ansatz und die Verwertung von Futterenergie, Protein und Aminosäuren durch weibliche Mastschweine. 4. Mitteilung. Stickstoff- und Aminosäurengehalte in den Schlachtkörpern und Schlachtkörperteilen. Archiv für Tierernaehrung 33, 389413.

Keywords

Type Description Title
WORD
Supplementary materials

Hulshof supplementary material
Tables S1-S3

 Word (34 KB)
34 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed