Skip to main content Accessibility help
×
Home
Hostname: page-component-5bf98f6d76-rtbc9 Total loading time: 0.287 Render date: 2021-04-20T16:26:36.303Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Article contents

More tail lesions among undocked than tail docked pigs in a conventional herd

Published online by Cambridge University Press:  15 March 2017

H. P. Lahrmann
Affiliation:
SEGES, Danish Pig Research Centre, Axeltorv 3, 1609 Copenhagen V, Denmark
M. E. Busch
Affiliation:
SEGES, Danish Pig Research Centre, Axeltorv 3, 1609 Copenhagen V, Denmark
R. B. D’Eath
Affiliation:
SRUC, West Mains Road, Edinburgh EH9 3JG, UK
B. Forkman
Affiliation:
Department of Large Animal Sciences, University of Copenhagen, Grønnegårdsvej 8, 1870 Frederiksberg, Copenhagen, Denmark
C. F. Hansen
Affiliation:
Department of Large Animal Sciences, University of Copenhagen, Grønnegårdsvej 8, 1870 Frederiksberg, Copenhagen, Denmark
Corresponding
E-mail address:
Get access

Abstract

The vast majority of piglets reared in the European Union (EU) and worldwide is tail docked to reduce the risk of being tail bitten, even though EU animal welfare legislation bans routine tail docking. Many conventional herds experience low levels of tail biting among tail docked pigs, however it is not known, what the prevalence would have been had the pigs not been tail docked. The aim of this study was to compare the prevalence of tail lesions between docked and undocked pigs in a conventional piggery in Denmark with very low prevalence of tail biting among tail docked pigs. The study included 1922 DanAvl Duroc×(Landrace×Large White) female and castrated male pigs (962 docked and 960 undocked). Docked and undocked pigs were housed under the same conditions in the same room but in separate pens with 20 (±0.03) pigs/pen. Pigs had ad libitum access to commercial diets in a feed dispenser. Manipulable material in the form of chopped straw was provided daily on the floor (~10 g/pig per day), and each pen had two vertically placed soft wood boards. From weaning to slaughter, tail wounds (injury severity and freshness) were scored every 2nd week. No clinical signs of injured tails were observed within the tail docked group, whereas 23.0% of the undocked pigs got a tail lesion. On average, 4.0% of the pigs with undocked tails had a tail lesion on tail inspection days. More pens with tail lesions were observed among pigs weighing 30 to 60 kg (34.3%; P<0.05) than in pens with pigs weighing 7 to 30 kg (13.0%) and 60 to 90 kg (12.8%). Removal of pigs to a hospital pen was more likely in undocked pens (P<0.05, 47.7% undocked pens and 22.9% docked pens). Finally, abattoir meat inspection data revealed more tail biting remarks in undocked pigs (P<0.001). In conclusion, this study suggests that housing pigs with intact tails in conventional herds with very low prevalence of tail biting among tail docked pigs, will increase the prevalence of pigs with tail lesions considerably, and pig producers will need more hospital pens. Abattoir data indicate that tail biting remarks from meat inspection data severely underestimate on-farm prevalence of tail lesions.

Type
Research Article
Information
animal , Volume 11 , Issue 10 , October 2017 , pp. 1825 - 1831
Copyright
© The Animal Consortium 2017 

Access options

Get access to the full version of this content by using one of the access options below.

References

Alban, L, Petersen, JV and Busch, ME 2015. A comparison between lesions found during meat inspection of finishing pigs raised under organic/free-range conditions and conventional, indoor conditions. Porcine Health Management 1, 111.CrossRefGoogle ScholarPubMed
Beattie, VE, Sneddon, IA, Walker, N and Weatherup, RN 2001. Environmental enrichment of intensive pig housing using spent mushroom compost. Animal Science 72, 3542.CrossRefGoogle Scholar
Bracke, MBM, Lauwere, CCd, Wind, SMM and Zonderland, JJ 2013. Attitudes of Dutch pig farmers towards tail biting and tail docking. Journal of Agricultural & Environmental Ethics 26, 847868.CrossRefGoogle Scholar
Cagienard, A, Regula, G and Danuser, J 2005. The impact of different housing systems on health and welfare of grower and finisher pigs in Switzerland. Preventive Veterinary Medicine 68, 4961.CrossRefGoogle ScholarPubMed
D’Eath, RB, Arnott, G, Turner, SP, Jensen, T, Lahrmann, HP, Busch, ME, Niemi, JK, Lawrence, AB and Sandoe, P 2014. Injurious tail biting in pigs: how can it be controlled in existing systems without tail docking? Animal 8, 14791497.CrossRefGoogle ScholarPubMed
D’Eath, RB, Niemi, JK, Ahmadi Vosough, B, Rutherford, KMD, Ison, SH, Turner, SP, Anker, HT, Jensen, T, Busch, ME, Jensen, KK, Lawrence, AB and Sandøe, P 2016. Why are most EU pigs tail docked? Economic and ethical analysis of four pig housing and management scenarios in the light of EU legislation and animal welfare outcomes. Animal 10, 687699.CrossRefGoogle ScholarPubMed
Di Martino, G, Scollo, A, Gottardo, F, Stefani, AL, Schiavon, E, Capello, K, Marangon, S and Bonfanti, L 2015. The effect of tail docking on the welfare of pigs housed under challenging conditions. Livestock Science 173, 7886.CrossRefGoogle Scholar
EFSA 2007. Scientific report on the risks associated with tail biting in pigs and possible means to reduce the need for tail docking considering the different housing and husbandry systems. Retrieved on 23 June 2016 from http://www.efsa.europa.eu/en/efsajournal/doc/611.pdf.Google Scholar
EFSA 2014. Scientific opinion concerning a Multifactorial approach on the use of animal and non-animal-based measures to assess the welfare of pigs. Retrieved on 23 June 2016 from http://www.efsa.europa.eu/en/efsajournal/doc/3702.pdf.Google Scholar
Harley, S, More, SJ, O’Connell, N, Hanion, A, Teixeira, D and Boyle, L 2012. Evaluating the prevalence of tail biting and carcase condemnations in slaughter pigs in the Republic and Northern Ireland, and the potential of abattoir meat inspection as a welfare surveillance tool. Veterinary Record 171, 621.CrossRefGoogle ScholarPubMed
Keeling, LJ, Wallenbeck, A, Larsen, A and Holmgren, N 2012. Scoring tail damage in pigs: an evaluation based on recordings at Swedish slaughterhouses. Acta Veterinaria Scandinavia 54, 16.Google ScholarPubMed
Kritas, SK and Morrison, RB 2004. An observational study on tail biting in commercial grower-finisher barns. Journal of Swine Health and Production 12, 1722.Google Scholar
Lahrmann, HP, Oxholm, LC, Steinmetz, H, Nielsen, MBF and DÉath, R 2014. The effect of long or chopped straw on pig behaviour. Animal 9, 862870.CrossRefGoogle ScholarPubMed
Moinard, C, Mendl, M, Nicol, CJ and Green, LE 2003. A case control study of on-farm risk factors for tail biting in pigs. Applied Animal Behaviour Science 81, 333355.CrossRefGoogle Scholar
O’Driscoll, K, O’Gorman, DM, Taylor, S and Boyle, LA 2013. The influence of a magnesium-rich marine extract on behaviour, salivary cortisol levels and skin lesions in growing pigs. Animal 7, 10171027.CrossRefGoogle ScholarPubMed
Oxholm, LC, Steinmetz, HV, Lahrmann, HP, Nielsen, MBF, Amdi, C and Hansen, CF 2014. Behaviour of liquid-fed growing pigs provided with straw in various amounts and frequencies. Animal 8, 18891897.CrossRefGoogle ScholarPubMed
Schrøder-Petersen, DL and Simonsen, HB 2001. Tail Biting in Pigs. The Veterinary Journal 162, 196210.CrossRefGoogle ScholarPubMed
Scollo, A, Contiero, B and Gottardo, F 2016. Frequency of tail lesions and risk factors for tail biting in heavy pig production from weaning to 170 kg live weight. The Veterinary Journal 207, 9298.CrossRefGoogle ScholarPubMed
Scollo, A, Di Martino, G, Bonfanti, L, Stefani, AL, Schiavon, E, Marangon, S and Gottardo, F 2013. Tail docking and the rearing of heavy pigs: the role played by gender and the presence of straw in the control of tail biting. Blood parameters, behaviour and skin lesions. Research in Veterinary Science 95, 825830.CrossRefGoogle ScholarPubMed
Sinisalo, A, Niemi, JK, Heinonen, M and Valros, A 2012. Tail biting and production performance in fattening pigs. Livestock Science 143, 220225.CrossRefGoogle Scholar
Sutherland, MA, Bryer, PJ, Krebs, N and McGlone, JJ 2009. The effect of method of tail docking on tail-biting behaviour and welfare of pigs. Animal Welfare 18, 561570.Google Scholar
Sutherland, MA and Tucker, CB 2011. The long and short of it: a review of tail docking in farm animals. Applied Animal Behaviour Science 135, 179191.CrossRefGoogle Scholar
Taylor, NR, Main, DCJ, Mendl, M and Edwards, SA 2010. Tail-biting: a new perspective. The Veterinary Journal 186, 137147.CrossRefGoogle ScholarPubMed
Taylor, NR, Parker, RM, Mendl, M, Edwards, SA and Main, DC 2012. Prevalence of risk factors for tail biting on commercial farms and intervention strategies. Veterinary Journal 194, 7783.CrossRefGoogle ScholarPubMed
Tybirk, P, Sloth, NM, Kjeldsen, NJ and Shooter, L 2016. Normer for næringsstoffer. SEGES, Videncenter for Svineproduktion, Danish Pig Research Centre, Copenhagen, Denmark. Retrieved on 23 June 2016 from http://vsp.lf.dk/Viden/Foder/Naeringsstoffer/Normer%20for%20naeringsstoffer.aspx.Google Scholar
Ursinus, WW, Van Reenen, CG, Kempa, B and Bolhuis, E 2014. Tail biting behaviour and tail damage in pigs and the relationship with general behaviour: predicting the inevitable? Applied Animal Behaviour Science 156, 2236.CrossRefGoogle Scholar
Valros, A, Ahlström, S, Rintala, H, Häkkinen, T and Saloniemi, H 2004. The prevalence of tail damage in slaughter pigs in Finland and associations to carcass condemnations. Acta Agriculturae Scandinavica 54, 213219.CrossRefGoogle Scholar
Valros, A and Heinonen, M 2015. Save the pig tail. Porcine Health Management 1, 17.CrossRefGoogle ScholarPubMed
Valros, A, Munsterhjelm, C, Hänninen, L, Kauppinen, T and Heinonen, M 2016. Managing undocked pigs – on-farm prevention of tail biting and attitudes towards tail biting and docking. Porcine Health Management 2, 111.CrossRefGoogle ScholarPubMed
Wallgren, P and Lindahl, E 1996. The influence of tail biting on performance of fattening pigs. Acta Veterinaria Scandinavica 37, 453460.Google ScholarPubMed
Zonderland, JJ, Bosma, B and Hoste, R 2011a. Financiële consequenties van staartbijten bij varkens. Wageningen UR Livestock Research, Lelystad, The Netherlands, pp. 1–109.Google Scholar
Zonderland, JJ, Bracke, MBM, Hartog, LAd, Kemp, B and Spoolder, HAM 2010. Gender effects on tail damage development in single- or mixed-sex groups of weaned piglets. Livestock Science 129, 151158.CrossRefGoogle Scholar
Zonderland, JJ, Kemp, B, Bracke, MBM, den Hartog, LA and Spoolder, HAM 2011b. Individual piglets’ contribution to the development of tail biting. Animal 5, 601607.CrossRefGoogle ScholarPubMed
Zonderland, JJ, Wolthuis-Fillerup, M, Reenen, CGV, Bracke, MBM, Kemp, B, Hartog, LAd and Spoolder, HAM 2008. Prevention and treatment of tail biting in weaned piglets. Applied Animal Behaviour Science 110, 269281.CrossRefGoogle Scholar

Altmetric attention score

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 43
Total number of PDF views: 329 *
View data table for this chart

* Views captured on Cambridge Core between 15th March 2017 - 20th April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

More tail lesions among undocked than tail docked pigs in a conventional herd
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

More tail lesions among undocked than tail docked pigs in a conventional herd
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

More tail lesions among undocked than tail docked pigs in a conventional herd
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *