Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-dxfhg Total loading time: 0.295 Render date: 2021-03-04T13:53:11.313Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Influence of rumen protozoa on methane emission in ruminants: a meta-analysis approach 1

Published online by Cambridge University Press:  30 July 2014

J. Guyader
Affiliation:
INRA, UMR1213 Herbivores, F-63122 Saint-Genès-Champanelle, France Clermont Université, VetAgro Sup, UMR1213 Herbivores, BP 10448, F-63000, Clermont-Ferrand, France
M. Eugène
Affiliation:
INRA, UMR1213 Herbivores, F-63122 Saint-Genès-Champanelle, France Clermont Université, VetAgro Sup, UMR1213 Herbivores, BP 10448, F-63000, Clermont-Ferrand, France
P. Nozière
Affiliation:
INRA, UMR1213 Herbivores, F-63122 Saint-Genès-Champanelle, France Clermont Université, VetAgro Sup, UMR1213 Herbivores, BP 10448, F-63000, Clermont-Ferrand, France
D. P. Morgavi
Affiliation:
INRA, UMR1213 Herbivores, F-63122 Saint-Genès-Champanelle, France Clermont Université, VetAgro Sup, UMR1213 Herbivores, BP 10448, F-63000, Clermont-Ferrand, France
M. Doreau
Affiliation:
INRA, UMR1213 Herbivores, F-63122 Saint-Genès-Champanelle, France Clermont Université, VetAgro Sup, UMR1213 Herbivores, BP 10448, F-63000, Clermont-Ferrand, France
C. Martin
Affiliation:
INRA, UMR1213 Herbivores, F-63122 Saint-Genès-Champanelle, France Clermont Université, VetAgro Sup, UMR1213 Herbivores, BP 10448, F-63000, Clermont-Ferrand, France
Corresponding
Get access

Abstract

A meta-analysis was conducted to evaluate the effects of protozoa concentration on methane emission from ruminants. A database was built from 59 publications reporting data from 76 in vivo experiments. The experiments included in the database recorded methane production and rumen protozoa concentration measured on the same groups of animals. Quantitative data such as diet chemical composition, rumen fermentation and microbial parameters, and qualitative information such as methane mitigation strategies were also collected. In the database, 31% of the experiments reported a concomitant reduction of both protozoa concentration and methane emission (g/kg dry matter intake). Nearly all of these experiments tested lipids as methane mitigation strategies. By contrast, 21% of the experiments reported a variation in methane emission without changes in protozoa numbers, indicating that methanogenesis is also regulated by other mechanisms not involving protozoa. Experiments that used chemical compounds as an antimethanogenic treatment belonged to this group. The relationship between methane emission and protozoa concentration was studied with a variance−covariance model, with experiment as a fixed effect. The experiments included in the analysis had a within-experiment variation of protozoa concentration higher than 5.3 log10 cells/ml corresponding to the average s.e.m. of the database for this variable. To detect potential interfering factors for the relationship, the influence of several qualitative and quantitative secondary factors was tested. This meta-analysis showed a significant linear relationship between methane emission and protozoa concentration: methane (g/kg dry matter intake)=−30.7+8.14×protozoa (log10 cells/ml) with 28 experiments (91 treatments), residual mean square error=1.94 and adjusted R 2=0.90. The proportion of butyrate in the rumen positively influenced the least square means of this relationship.

Type
Research Article
Information
Copyright
© The Animal Consortium 2014 

Access options

Get access to the full version of this content by using one of the access options below.

Footnotes

1

This paper is based on a presentation at the Greenhouse Gases and Animal Agriculture Conference held in Dublin, June 2013.

References

Brossard, L, Martin, C, Chaucheyras-Durand, F and Michalet-Doreau, B 2004. Protozoa involved in butyric rather than lactic fermentative pattern during latent acidosis in sheep. Reproduction Nutrition Development 44, 195206.CrossRefGoogle Scholar
Calsamiglia, S, Busquet, M, Cardozo, PW, Castillejos, L and Ferret, A 2007. Invited review: essential oils as modifiers of rumen microbial fermentation. Journal of Dairy Science 90, 25802595.CrossRefGoogle ScholarPubMed
Czerkawski, JW 1986. An introduction to rumen studies. Pergamon Press, Oxfordshire and New York, NY, USA.Google Scholar
Doreau, M and Ferlay, A 1995. Effect of dietary lipids on nitrogen metabolism in the rumen: a review. Livestock Production Science 43, 97110.CrossRefGoogle Scholar
Finlay, BJ, Esteban, G, Clarke, KJ, Williams, AG, Embley, TM and Hirt, RP 1994. Some rumen ciliates have endosymbiotic methanogens. FEMS Microbiology Letters 117, 157161.CrossRefGoogle ScholarPubMed
Goel, G, Puniya, A, Aguilar, C and Singh, K 2005. Interaction of gut microflora with tannins in feeds. Die Naturwissenschaften 92, 497503.CrossRefGoogle ScholarPubMed
Hegarty, RS 1999. Reducing rumen methane emissions through elimination of rumen protozoa. Australian Journal of Agricultural Research 50, 13211327.CrossRefGoogle Scholar
Hook, SE, Wright, ADG and McBride, BW 2010. Methanogens: methane producers of the rumen and mitigation strategies. Archaea 2010, 111.CrossRefGoogle ScholarPubMed
Jeyanathan, J, Martin, C and Morgavi, DP 2014. The use of direct-fed microbials for mitigation of ruminant methane emissions: a review. Animal 8, 250261.CrossRefGoogle Scholar
Jordan, E, Lovett, DK, Monahan, FJ, Callan, J, Flynn, B and O’Mara, FP 2006. Effect of refined coconut oil or copra meal on methane output and on intake and performance of beef heifers. Journal of Animal Science 84, 162170.CrossRefGoogle ScholarPubMed
Lettat, A 2012. Efficacité et mode d'action des bactéries propioniques et/ou lactiques pour prévenir l'acidose latente chez le ruminant. PhD thesis, Blaise Pascal University, Clermont Ferrand, France.Google Scholar
Loncke, C, Ortigues-Marty, I, Vernet, J, Lapierre, H, Sauvant, D and Nozière, P 2009. Empirical prediction of net portal appearance of volatile fatty acids, glucose, and their secondary metabolites (b-hydroxybutyrate, lactate) from dietary characteristics in ruminants: a meta-analysis approach. Journal of Animal Science 87, 253268.CrossRefGoogle Scholar
Morgavi, DP, Jouany, JP and Martin, C 2008. Changes in methane emission and rumen fermentation parameters induced by refaunation in sheep. Australian Journal of Experimental Agriculture 48, 6972.CrossRefGoogle Scholar
Morgavi, DP, Forano, E, Martin, C and Newbold, CJ 2010. Microbial ecosystem and methanogenesis in ruminants. Animal 4, 10241036.CrossRefGoogle ScholarPubMed
Morgavi, DP, Martin, C, Jouany, JP and Ranilla, MJ 2012. Rumen protozoa and methanogenesis: not a simple cause-effect relationship. The British Journal of Nutrition 107, 388397.CrossRefGoogle ScholarPubMed
Newbold, CJ, Lassalas, B and Jouany, JP 1995. The importance of methanogens associated with ciliate protozoa in ruminal methane production in vitro. Letters in Applied Microbiology 21, 230234.CrossRefGoogle Scholar
Popova, M, Morgavi, DP, Doreau, M and Martin, C 2011. Production de méthane et interactions microbiennes dans le rumen. INRA Productions Animales 24, 447460.Google Scholar
Sauvant, D, Perez, J and Tran, G 2004. Tables de composition et de valeur nutritive des matières premières destinées aux animaux d'élevage. INRA Editions, Paris, France.Google Scholar
Sauvant, D, Schmidely, P, Daudin, JJ and St-Pierre, NR 2008. Meta-analyses of experimental data in animal nutrition. Animal 2, 12031214.CrossRefGoogle ScholarPubMed
Sauvant, D, Giger-Reverdin, S, Serment, A and Broudiscou, L 2011. Influences des régimes et de leur fermentation dans le rumen sur la production de méthane par les ruminants. INRA Productions Animales 24, 433446.Google Scholar
Stewart, CS, Flint, HJ and Bryant, MP 1997. The rumen bacteria. In The rumen microbial ecosystem (ed. PN Hobson and CS Stewart), pp. 1072. Blackie Academic & Professional, London, UK.CrossRefGoogle Scholar
Ungerfeld, EM and Kohn, RA 2006. The role of thermodynamics in the control of ruminal fermentation. In Ruminant physiology: digestion, metabolism and impact of nutrition on gene expression, immunology and stress (ed. K Sejrsen, T Hvelplund and MO Nielsen), pp. 5585. Wageningen Academic Publishers, Wageningen, The Netherlands.Google Scholar
Ungerfeld, EM, Kohn, RA, Wallace, RJ and Newbold, CJ 2007. A meta-analysis of fumarate effects on methane production in ruminal batch cultures. Journal of Animal Science 85, 25562563.CrossRefGoogle ScholarPubMed
Williams, AG and Coleman, GS 1992. The rumen protozoa. Springer-Verlag, New York, NY, USA.CrossRefGoogle Scholar

Supplementary material

Guyader Supplementary material S1

File 22 KB

Altmetric attention score

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 40
Total number of PDF views: 439 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 4th March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Influence of rumen protozoa on methane emission in ruminants: a meta-analysis approach 1
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Influence of rumen protozoa on methane emission in ruminants: a meta-analysis approach 1
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Influence of rumen protozoa on methane emission in ruminants: a meta-analysis approach 1
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *