Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-6pznq Total loading time: 0.423 Render date: 2021-03-01T14:24:52.097Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Article contents

e-Dairy: a dynamic and stochastic whole-farm model that predicts biophysical and economic performance of grazing dairy systems

Published online by Cambridge University Press:  20 December 2012

J. Baudracco
Affiliation:
Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Private Bag 11-222, Palmerston North 5301, New Zealand Departamento de Produccion Animal, Facultad de Ciencias Agrarias, Universidad Nacional del Litoral, Kreder 2805, (3080) Esperanza, Argentina
N. Lopez-Villalobos
Affiliation:
Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Private Bag 11-222, Palmerston North 5301, New Zealand
C. W. Holmes
Affiliation:
Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Private Bag 11-222, Palmerston North 5301, New Zealand
E. A. Comeron
Affiliation:
Instituto Nacional de Tecnología Agropecuaria (INTA), AIPA, Ruta 34 Km 227, (2300) Rafaela, Santa Fe, Argentina
K. A. Macdonald
Affiliation:
DairyNZ, Private Bag 3221, Hamilton 3240, New Zealand
T. N. Barry
Affiliation:
Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Private Bag 11-222, Palmerston North 5301, New Zealand
Corresponding
E-mail address:
Get access

Abstract

A whole-farm, stochastic and dynamic simulation model was developed to predict biophysical and economic performance of grazing dairy systems. Several whole-farm models simulate grazing dairy systems, but most of them work at a herd level. This model, named e-Dairy, differs from the few models that work at an animal level, because it allows stochastic behaviour of the genetic merit of individual cows for several traits, namely, yields of milk, fat and protein, live weight (LW) and body condition score (BCS) within a whole-farm model. This model accounts for genetic differences between cows, is sensitive to genotype × environment interactions at an animal level and allows pasture growth, milk and supplements price to behave stochastically. The model includes an energy-based animal module that predicts intake at grazing, mammary gland functioning and body lipid change. This whole-farm model simulates a 365-day period for individual cows within a herd, with cow parameters randomly generated on the basis of the mean parameter values, defined as input and variance and co-variances from experimental data sets. The main inputs of e-Dairy are farm area, use of land, type of pasture, type of crops, monthly pasture growth rate, supplements offered, nutritional quality of feeds, herd description including herd size, age structure, calving pattern, BCS and LW at calving, probabilities of pregnancy, average genetic merit and economic values for items of income and costs. The model allows to set management policies to define: dry-off cows (ceasing of lactation), target pre- and post-grazing herbage mass and feed supplementation. The main outputs are herbage dry matter intake, annual pasture utilisation, milk yield, changes in BCS and LW, economic farm profit and return on assets. The model showed satisfactory accuracy of prediction when validated against two data sets from farmlet system experiments. Relative prediction errors were <10% for all variables, and concordance correlation coefficients over 0.80 for annual pasture utilisation, yields of milk and milk solids (MS; fat plus protein), and of 0.69 and 0.48 for LW and BCS, respectively. A simulation of two contrasting dairy systems is presented to show the practical use of the model. The model can be used to explore the effects of feeding level and genetic merit and their interactions for grazing dairy systems, evaluating the trade-offs between profit and the associated risk.

Type
Farming systems and environment
Copyright
Copyright © The Animal Consortium 2012

Access options

Get access to the full version of this content by using one of the access options below.

References

Baudracco, J, Lopez-Villalobos, N, Holmes, CW, Comeron, EA, Macdonald, KA, Barry, TN, Friggens, NC 2012. e-Cow: an animal model that predicts herbage intake, milk yield and live weight change in dairy cows grazing temperate pastures, with and without supplementary feeding. Animal 6, 980993.CrossRefGoogle ScholarPubMed
Baudracco, J, Lopez-Villalobos, N, Romero, LA, Scandolo, D, Maciel, MG, Comeron, EA, Holmes, CW, Barry, TN 2011. Effects of stocking rate on pasture production, milk production and reproduction of supplemented crossbred Holstein–Jersey dairy cows grazing lucerne pasture. Animal Feed Science and Technology 168, 131143.CrossRefGoogle Scholar
Beukes, PC, Palliser, CC, Macdonald, KA, Lancaster, JAS, Levy, G, Thorrold, BS, Wastney, ME 2008. Evaluation of a whole-farm model for pasture-based dairy systems. Journal of Dairy Science 91, 23532360.CrossRefGoogle ScholarPubMed
Bircham, JS, Hodgson, J 1983. The influence of sward condition on rates of herbage growth and senescence in mixed swards under continuous stocking management. Grass and Forage Science 38, 323331.CrossRefGoogle Scholar
Bryant, J, Ogle, G, Marshall, P, Glassey, C, Lancaster, J, Garcia, SC, Holmes, CW 2010. Description and evaluation of the Farmax Dairy Pro decision support model. New Zealand Journal of Agricultural Research 53, 1328.CrossRefGoogle Scholar
DairyNZ 2009. Dairy Operating Profit. Retrieved February 25, 2011, from www.dairynz.co.nz/file/fileid/28974.Google Scholar
DairyNZ 2010. Economic Survey 2008/2009. Retrieved February 16, 2011, from www.dairynz.co.nz/file/fileid/31376.Google Scholar
Delagarde, R, Valk, H, Mayne, CS, Rook, AJ, Gonzalez-Rodrıguez, A, Baratte, C, Faverdin, P, Peyraud, JL 2011. GrazeIn: a model of herbage intake and milk production for grazing dairy cows. 3. Simulations and external validation of the model. Grass and Forage Science 66, 6177.CrossRefGoogle Scholar
Fox, DG, Van Amburgh, ME, Tylutki, TP 1999. Predicting requirements for growth, maturity, and body reserves in dairy cattle. Journal of Dairy Science 82, 19681977.CrossRefGoogle ScholarPubMed
Freer, M, Moore, AD, Donnelly, JR 1997. GRAZPLAN: decision support systems for Australian grazing enterprises-II. The animal biology model for feed intake, production and reproduction and the GrazFeed DSS. Agricultural Systems 54, 77126.CrossRefGoogle Scholar
Friggens, NC, Newbold, JR 2007. Towards a biological basis for predicting nutrient partitioning: the dairy cow as an example. Animal 1, 8797.CrossRefGoogle ScholarPubMed
Friggens, NC, Ingvartsen, KL, Emmans, GC 2004. Prediction of body lipid change in pregnancy and lactation. Journal of Dairy Science 87, 9881000.CrossRefGoogle ScholarPubMed
Friggens, NC, Brun-Lafleur, L, Faverdin, P, Sauvant, D, Martin, O 2011. Advances in predicting nutrient partitioning in the dairy cow: recognizing the central role of genotype and its expression. Animal, published online doi:10.1017/S1751731111001820.Google ScholarPubMed
Fuentes-Pila, J, Ibanez, M, De Miguel, J, Beede, DK 2003. Predicting average feed intake of lactating Holstein cows fed totally mixed rations. Journal of Dairy Science 86, 309323.CrossRefGoogle ScholarPubMed
Fuentes Pila, J, DeLorenzo, MA, Beede, DK, Staples, CR, Holter, JB 1996. Evaluation of equations based on animal factors to predict intake of lactating Holstein cows. Journal of Dairy Science 79, 15621571.CrossRefGoogle ScholarPubMed
Garcia, SC 2000. Systems, component, and modelling studies of pasture-based dairy systems in which the cows calve at different times of the year. PhD, Massey University, New Zealand.Google Scholar
Gartner, JA 1981. Replacement policy in dairy herds on farms where heifers compete with the cows for Grassland – part 1: model construction and validation. Agricultural Systems 7, 289318.CrossRefGoogle Scholar
Holmes, CW, Roche, JF 2007. Pasture and supplements in New Zealand dairy production systems. In Pastures and supplements for grazing animals. Occ. Pub. No 14., pp. 221242. New Zealand Society of Animal Production, Hamilton, New Zealand.Google Scholar
Landis, JR, Koch, GG 1977. The measurement of observer agreement for categorical data. Biometrics 33, 159174.CrossRefGoogle ScholarPubMed
Larcombe, M 1990. UDDER: a desktop dairyfarm for extension and research. In Proceedings of the 7th Seminar of the Dairy Cattle Society of the New Zealand Veterinary Association, Hamilton, New Zealand, 22–25 May 1990, 99, 151–152.Google Scholar
Lin, LIK 1989. A concordance correlation coefficient to evaluate reproducibility. Biometrics 45, 255268.CrossRefGoogle ScholarPubMed
Livestock Improvement Corporation 2010. Dairy Statistics 2008–2009. Livestock Improvement Corp. Ltd. Hamilton, New Zealand. Retrieved February 18, 2011, from http://www.lic.co.nz/pdf/DAIRY%20STATISTICS%2009-10-WEB.pdf.Google Scholar
Lopez-Villalobos, N, Garrick, DJ, Holmes, CW, Blair, HT, Spelman, RJ 2000. Profitabilities of some mating systems for dairy herds in New Zealand. Journal of Dairy Science 83, 144153.CrossRefGoogle ScholarPubMed
Macdonald, KA, Penno, JW, Lancaster, JAS, Roche, JR 2008a. Effect of stocking rate on pasture production, milk production, and reproduction of dairy cows in pasture-based systems. Journal of Dairy Science 91, 21512163.CrossRefGoogle ScholarPubMed
Macdonald, KA, Verkerk, GA, Thorrold, BS, Pryce, JE, Penno, JW, McNaughton, LR, Burton, LJ, Lancaster, JAS, Williamson, JH, Holmes, CW 2008b. A comparison of three strains of Holstein–Friesian grazed on pasture and managed under different feed allowances. Journal of Dairy Science 91, 16931707.CrossRefGoogle ScholarPubMed
Marshall, KR 1989. The origin and history of the A + B − C payment system. In Milk payment and quality (ed. GK Barrell), pp. 911. Animal Industries Workshop, Lincoln College, New Zealand.Google Scholar
Martin, O, Sauvant, D 2010. A teleonomic model describing performance (body, milk and intake) during growth and over repeated reproductive cycles throughout the lifespan of dairy cattle. 2. Voluntary intake and energy partitioning. Animal 4, 20482056.CrossRefGoogle ScholarPubMed
Roche, JF, Berry, DP, Kolver, ES 2006. Holstein–Friesian strain and feed effects on milk production, body weight, and body condition score profiles in grazing dairy cows. Journal of Dairy Science 89, 35323543.CrossRefGoogle ScholarPubMed
Sanderson, MA, Karnezos, TP, Matches, AG 1994. Morphological development of alfalfa as a function of growing degree-days. Journal of Production Agriculture 7, 239242.CrossRefGoogle Scholar
Schils, RLM, De Haan, MHA, Hemmer, JGA, Van den Pol-Van Dasselaar, A, De Boer, JA, Evers, GA, Holshof, G, van Middelkoop, JC, Zom, RLG 2007. Dairy wise, a whole-farm dairy model. Journal of Dairy Science 90, 53345346.CrossRefGoogle Scholar
Shalloo, L, Dillon, P, Rath, M, Wallace, M 2004. Description and validation of the Moorepark dairy system model. Journal of Dairy Science 87, 19451959.CrossRefGoogle ScholarPubMed
Vayssières, J, Guerrin, F, Paillat, J, Lecomte, P 2009. GAMEDE: a global activity model for evaluating the sustainability of dairy enterprises. Part I – whole-farm dynamic model. Agricultural Systems 101, 128138.CrossRefGoogle Scholar
Vetharaniam, I, Davis, SR, Upsdell, M, Kolver, ES, Pleasants, AB 2003. Modeling the effect of energy status on mammary gland growth and lactation. Journal of Dairy Science 86, 31483156.CrossRefGoogle ScholarPubMed
Wilmink, JBM 1987. Adjustment of test-day milk, fat and protein yield for age, season and stage of lactation. Livestock Production Science 16, 335348.CrossRefGoogle Scholar
Woodward, SJR, Romera, AJ, Beskow, WB, Lovatt, SJ 2008. Better simulation modelling to support farming systems innovation: review and synthesis. New Zealand Journal of Agricultural Research 51, 235252.CrossRefGoogle Scholar

Baudracco Supplementary Material

Appendix

File 1 MB

Altmetric attention score

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 32
Total number of PDF views: 249 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 1st March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

e-Dairy: a dynamic and stochastic whole-farm model that predicts biophysical and economic performance of grazing dairy systems
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

e-Dairy: a dynamic and stochastic whole-farm model that predicts biophysical and economic performance of grazing dairy systems
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

e-Dairy: a dynamic and stochastic whole-farm model that predicts biophysical and economic performance of grazing dairy systems
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *