Skip to main content Accessibility help

Rumen microbial production estimated either from urinary purine derivative excretion or from direct measurements of 15N and purine bases as microbial markers: effect of protein source and rumen bacteria isolates

  • J. F. Pérez (a1), J. Balcells (a1), J. A. Guada (a1) and C. Castrillo (a1)


Four ewes fitted with ruminal and duodenal T-piece cannulae were each given six diets in a 6 × 4 factorial design. Diets or experimental treatments consisted of two ratios of forage: concentrate (700:150 (LC) and 400: 600 (HO). Forage was ammonia-treated straw and the concentrate was formulated with barley supplemented with one of three protein sources: sunflower meal, soya-bean meal or fish meal. Duodenal flows ofdigesta were estimated by the dual-phase technique using Co-EDTA and Yb acetate as liquid and solid markers. Microbial nitrogen (N) was estimated from the digesta flow of purine bases and 15N enrichment using as reference samples, bacterial isolates from the liquid (LAB) or solid (SAB) phase of rumen digesta.

Duodenal flow of purine bases (mmol/day) was lower on LC (12·9) than HC (17·7) diets but in both treatments it was depressed by fish meal (12·3) compared with either soya-bean (17·3) or sunflower meal (16·3) as supplements (s.e. 1·13). Urinary excretion of purine derivatives showed a similar trend, 8·6 v. III mmol/day in LC and HC respectively and 8·8 v. 10·4 and 10·5 mmol/day in fish meal, soya-bean and sunflower meal diets (s.e. 0·56), respectively. Variation in excretion of urinary purine derivatives was mainly associated with digestible organic matter intake with an average ratio of 1·7 (s.e. 0·11) mmol per 100 g digestible organic matter intake. Irrespective of the microbial marker used, microbial yield was higher in animals offered HC than in those offered LC and with soya-bean or sunflower meal compared with fish meal supplemented diets. The microbial purine bases/N (mmol/g) ratio varied between LAB (1·99, s.e. 0·092) and SAB (1·69, s.e. 0·071) isolates leading to different estimates of microbial-N yield (g) from duodenal purine bases (7·76 (s.e. 2·84) v. 9·13 (s.e. 3·24)), urinary excretion of allantoin (5·57 (s.e. 2·0) v. 6·57 (s.e. 2·03)) or total purine derivatives (6·43 (s.e. 2·39) v. 7·56 (s.e. 2·77)). Urinary excretion of allantoin or total purine derivatives provided consistently lower estimates of duodenal microbial-N than duodenal purine bases or 15N, although it closely reflected the pattern observed in direct measurements.



Hide All
Agricultural Research Council. 1984. The nutrient requirements of ruminant livestock. Supplement no. 1. Commonwealth Agricultural Bureaux, Slough.
Antoniewicz, A. M., Heinemann, W. W. and Hanks, E. M. 1981. Effect of level of feed intake and body mass on allantoin excretion and the allantoin to creatinine ratio in the urine of sheep. Roczniki Naukowe Zootechniki T8 1: 4965.
Balcells, J., Guada, J. A., Castrillo, C. and Gasa, J. 1991. Urinary excretion of allantoin and allantoin precursors by sheep after different rates of purine infusion into the duodenum. Journal of Agricultural Science, Cambridge 116: 309317.
Balcells, J., Guada, J. A., Castrillo, C. and Gasa, J. 1993. Rumen digestion and urinary excretion of purine derivatives in response to urea supplementation of sodium-treated straw fed to sheep. British Journal of Nutrition 69: 721732.
Balcells, J., Guada, J. A., Peiro, J. M. and Parker, D. S. 1992. Simultaneous determination of allantoin and oxypurines in biological fluids by high-performance liquid chromatography. Journal of Chromatography 575:153157.
Bates, D. B., Gillett, J. A., Barao, S. A. and Berger, W. G. 1985. The effect of specific growth rate and stage of growth on nucleic acid-protein values of pure cultures and mixed ruminal bacteria. Journal of Animal Science 61: 713724.
Bauchart, D., Legay-Carmier, F., Doreau, M. and Jouany, P. 1985. Effects de l'addition de matieres grasses non protegees a la ration de la vache laitiere sur la concentration et la composition chimique des bacteries et des protozoaires du rumen. Reproduction Nutrition, Development 26:309310.
Beckers, Y., Thewis, A., Maudoux, B. and Francois, E. 1995. Studies on the in situ nitrogen degradability corrected for bacterial contamination of concentrate feeds in steers. Journal of Animal Science 73:220227.
Broderick, G. A. and Merchen, N. R. 1992. Markers for quantifying microbial protein synthesis in the rumen. Journal of Dairy Science 75: 26182632.
Buresh, R. J., Austin, E. R. and Craswell, E. T. 1982. Analytical methods in15N research. Fertilizer Research 3: 3762.
Cecava, M. J., Merchen, N. R., Gay, L. C. and Berger, L. L. 1990. Composition of ruminal bacteria harvested from steers as influenced by dietary energy level, feeding frequency, and isolation techniques. Journal of Dairy Science 73: 24802488.
Chen, X. B., Hovell, F. D. DeB., Ørskov, E. R. and Brown, D. S. 1990. Excretion of purine derivatives by ruminants: effect of exogenous nucleic acid supply on purine derivative excretion by sheep. British Journal of Nutrition 63: 131142.
Clark, J. H., Klusmeyer, T. H. and Cameron, M. R. 1990. Microbial protein synthesis and flows of nitrogen fractions to the duodenum of dairy cows. Journal of Dairy Science 75: 23042323.
Craig, W. M, Broderick, G. A. and Ricker, D. B. 1987. Quantitation of microorganisms associated with the particulate phase of ruminal ingesta. Journal of Nutrition 117: 5662.
Faichney, G. C. 1975. The use of markers to partition digestion within the gastrointestinal tract of ruminants. In Digestion and metabolism in the ruminant (ed. MacDonald, I. W. and Warner, A. C. I.), pp. 277291. Armidale University of New England Publishing Unit.
Firkins, J. L., Berger, L. L., Merchen, N. R., Fahey, G. C. Jr and Mulvaney, R. L. 1987. Ruminal nitrogen metabolism in steers as affected by feed intake and dietary urea concentration. Journal of Dairy Science 70:23022311.
Firkins, J. L., Weis, W. P. and Piwonka, E. J. 1992. Quantification of intraruminal recycling of microbial nitrogen using nitrogen-15. Journal of Animal Science 70: 32233233.
Fondevila, M., Castrillo, C, Guada, J. A. and Balcells, J. 1994. Effect of ammonia treatment and carbohydrate supplementation of barley straw on rumen liquid characteristics and substrate degradation by sheep. Animal Feed Science and Technology 22: 305320.
France, J. and Siddons, R. C. 1993. Volatile fatty acid production. In Quantitative aspects of ruminant digestion and metabolism (ed. Forbes, J. M. and France, J.), pp. 107121. CAB International, Wallingford.
Goering, H. K. and Van Soest, P. J. 1975. Forage fiber analysis. Agricultural handbook no. 379. Agricultural Research Service, USDA, Washington, DC.
Ha, J. K. and Kennelly, J. J. 1984. Influence of freeze-storage on nucleic acid concentration in bacteria and duodenal digesta. Canadian Journal of Animal Science 64: 791793.
Harvey, W. R. 1987. Least squares and maximum likelihood mixed model, procedures and applications. Department of Dairy Science, Ohio State University, Columbus.
Ho, Y., Miller, K. W., Savaiano, D. A., Crane, R. T., Ericson, K. A. and Clifford, A. J. 1979. Absorption and metabolism of orally administered purines in fed and fasted rats. Journal of Nutrition 109:13771382.
John, A. and Ulyatt, M. J. 1984. Measurement of protozoa using phosphatidyl choline and of bacteria using nucleic acids in the duodenal digesta of sheep fed chaffed lucerne hay (Medicago sativa L.) diets. Journal of Agricultural Science, Cambridge 102:3344.
Jouany, J. P. 1982. Volatile fatty acid and alcohol determinations in digestive contents, silage juices, bacterial cultures and anaerobic fermentors contents. Science Aliments 2:131144.
Kang-Meznarich, J. H. and Broderick, G. A. 1980. Effects of incremental urea supplementation on ruminal ammonia concentration and bacterial protein formation. Journal of Animal Science 51:422431.
Koening, S. E., Schelling, G. E., Mitchell, G. E. Jr and Tucker, R. E. 1980. Purine and pyrimidine bases as potential indicators of microbial protein synthesis. Journal of Animal Science 51: 2538.
Laurent, F., Blanchart, G. and Vignon, B. 1983. Relation entre I'excretion urinaire d'allantoine et Yutilisation de I'azote chez le chevre laitiere. IV Symp. Int. Metabolism et nutrition azotes. INRA Publications (les Colloques d l'INRA), II (16): 175178.
Legay-Carmier, F. and Bauchart, D. 1989. Distribution of bacteria in the rumen contents of dairy cows given a diet supplemented with soya-bean oil. British Journal of Nutrition 61: 725740.
Lindberg, J. E. 1989. Nitrogen metabolism and urinary excretion of purines in goat kids. British Journal of Nutrition 61:309321.
McAllan, A. B., Cockburn, J. E., Williams, A. P. and Smith, R. H. 1988. The degradation of different protein supplements in the rumen of steers and the effect of these supplements on carbohydrate digestion. British Journal of Nutrition 60: 669682.
McAllan, A. B. 1980. The degradation of nucleic acids in, and the removal of breakdown products from the small intestines of steers. British Journal of Nutrition 44: 99112.
McCarthy, R. D., Klusmeyer, T. H., Vicini, J. L. and Clark, J. H. 1989. Effects of source of protein and carbohydrate on ruminal fermentation and passage of nutrients to the small intestine of lactating cows. Journal of Dairy Science 72: 20022016.
Mackinon, A. M. and Deller, D. J. 1973. Purine nucleotide biosynthesis in gastrointestinal mucosa. Biochimica et Biophysica Ada 319:118.
Martin Orúe, S. M., Balcells, J., Guada, J. A. and Castrillo, C. 1995. Endogenous purine and pyrimidine derivative excretion in pregnant sows. British Journal of Nutrition 73: 375385.
Mathers, J. C. and Miller, E. L. 1981. Quantitative studies of food protein degradation and the energetic efficiency of microbial protein synthesis in the rumen of sheep given chopped lucerne and rolled barley. British Journal of Nutrition 45: 587604.
Merry, R. J. and McAllan, A. B. 1983. A comparison of the chemical composition of mixed rumen bacteria harvested from the liquid and solid fractions of rumen digesta. British Journal of Nutrition 50: 701709.
Minato, H. and Suto, T. 1978. Technique for fractionation of bacteria in rumen microbial ecosystem. II. Attachment of bacteria isolated from bovine rumen to cellulose powder in vitro and elution of bacteria attached therefrom. Journal of General and Applied Microbiology 24:116.
Olubobokun, J. A. and Craig, W. M. 1990. Quantity and characteristics of microorganisms associated with ruminal fluid or particles. Journal of Animal Science 68: 33603370.
Pérez, J. F., Balcells, J., Guada, J. A. and Castrillo, C. 1996. Determinations of rumen microbial-N production in sheep. A comparison of urinary purine excretion with methods using15 and purine bases as markers of microbial-N entering the duodenum. British Journal of Nutrition 75: 699709.
Pérez, J. F, Balcells, J., Guada, J. A. and Surra, J. C. 1995. Contribution of dietary purine bases to duodenal digesta: effect of forage/concentrate ratio. Animal Science 60: 544 (abstr.).
Siddons, R. C, Paradine, J., Beever, D. E. and Cornell, P. R. 1985. Ytterbium acetate as a particulate-phase digesta-flow marker. British Journal of Nutrition 54:509519.
Smith, R. H., McAllan, A. B., Hewitt, D. and Lewis, P. E. 1978. Estimation of amounts of microbial and dietary nitrogen compounds entering the duodenum of cattle. Journal of Agricultural Science, Cambridge 90:557568.
Sonoda, T. and Tatibana, M. 1978. Metabolic fate of pyrimidines and purines in dietary nucleic acids ingested by mice. Biochimica et Biophysica Acta 521:5566.
Steel, R. G. D. and Torrie, J. H. 1980. Principles and procedures of statistics, second edition. McGraw-Hill, New York.
Surra, J. C. E. 1994. Excretion de los derivados metabolicos de las bases puricas en la especie ovina. Tesis Doctoral, Universidad de Zaragoza.
Van Soest, P. J. 1982. Nutritional ecology of the ruminant. O. and B. Books Inc., Corvallis, Oregon.
Zinn, R. A. and Owens, F. N. 1986. A rapid procedure for purine measurement and its use for estimating net ruminal protein synthesis. Canadian Journal of Animal Science 66: 157166.


Rumen microbial production estimated either from urinary purine derivative excretion or from direct measurements of 15N and purine bases as microbial markers: effect of protein source and rumen bacteria isolates

  • J. F. Pérez (a1), J. Balcells (a1), J. A. Guada (a1) and C. Castrillo (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed