Skip to main content Accessibility help

Responses of young calves to low ambient temperatures at two levels of feeding

  • J. W. Schrama (a1) (a2), A. Arieli (a3), M. J. W. Heetkamp (a1) and M. W. A. Verstegen (a2)


Seven groups of five or six Holstein-Friesian male calves were transported to an experimental farm at 2 to 3 days of age. At 6 days of age, heat production (HP) and metabolizable energy (ME) intake were measured for an 8-day period. During this period, calves were exposed to various ambient temperatures: 6, 9, 12 and 15°C. Ambient temperature was constant within days, but changed between days. Calves were fed below (four groups) or near (three groups) the maintenance requirements (290 or 460 kJ ME per kg M0·75 per day).

From 6 to 14 days of age the lower critical temperature (Tc) was 12·5°C and HP increased by 8·4 kJ/kg M0·75 per day per °Cfall in ambient temperature below Tc. Both Tc and increase in HP below Tc were not affected by feeding level. Rectal temperature was lower at low ambient temperatures. The decrease in rectal temperature with ambient temperature was greatest at the low feeding level.

During the experimental period, calves were not in a steady-state regarding energy metabolism. Heat production decreased with time. This decrease was affected by feeding level and ambient temperature. After arrival, the influence of both ambient temperature and feeding level on the energy metabolism of young calves increased with time.



Hide All
Blaxter, K. L. 1989. Energy metabolism in animals and man. Cambridge University Press, Cambridge.
Brody, S. 1945. Bioenergetics and growth. Reinhold, New York.
Brouwer, E. 1965. Report of Sub-Committee on Constants and Factors. In Energy metabolism (ed. Blaxter, K. L.), pp. 441443. Academic Press, London.
Crookshank, H. R., Elissalde, M. H., White, R. G., Clanton, D. C. and Smalley, H. E. 1979. Effect of transportation and handling of calves upon blood seru m composition. Journal of Animal Science 48: 430435.
Dantzer, R. 1982. Research on farm animal transport in France: a survey. In Transport of animals intended for breeding, production and slaughter (ed. Moss, R.), pp. 218230. Martinus Nijhoff, The Hague.
Dantzer, R. and Mormede, P. 1983. Stress in farm animals: a need for reevaluation. Journal of Animal Science 57: 618.
Es, A. J. H. van, Nijkamp, H. J., Weerden, E. J. van and Hellemond, K. K. van. 1969. Energy, carbon and nitrogen balance experiments with veal calves. In Energy metabolism of farm animals (ed. Blaxter, K. L., Kielanowski, J. and Thorbek, G.), pp. 197201. Oriel Press, Newcastle upon Tyne.
Gonzalez-Jimenez, E. and Blaxter, K. L. 1962. The metabolism and thermal regulation of calves in the first month of life. British Journal of Nutrition 16: 199212.
Holmes, C. W. and McLean, N. A. 1975. Effects of air temperature and air movement on the heat produced by young Friesian and Jersey calves, with some measurements of the effects of artificial rain. New Zealand Journal of Agricultural Research 18: 277284.
Johnston, J. D. and Buckland, R. B. 1976. Response of male Holstein calves from seven sires to four management stresses as measured by plasma corticoid levels. Canadian Journal of Animal Science 56: 727–732.
Kent, J. E. and Ewbank, R. 1983. The effect of road transportation on the blood constituents and behaviour of calves. I. Six months old. British Veterinary Journal 139: 228235.
Kent, J. E. and Ewbank, R. 1986a. The effect of road transportation on the blood constituents and behaviour of calves. II. One to three weeks old. British Veterinary Journal 142: 131140.
Kent, J. E. and Ewbank, R. 1986b. The effect of road transportation on the blood constituents and behaviour of calves. III. Three months old. British Veterinary Journal 142: 326335.
Meulenbroeks, J., Verstegen, M. W. A., Hel, W. van der, Korver, S. and Kleinhout, G. 1986. The effect of genotype and metabolizable energy intake on protein and fat gain in veal calves. Animal Production 43: 195200.
Mitchell, H. H. 1928. Livestock investigations 1927–28. Report of the Illinois Agricultural Experiment Station, p. 155.
Mormède, P., Soissons, J., Bluthe, R. M., Raoult, J., Legarff, G., Levieux, D. and Dantzer, R. 1982. Effect of transportation on blood serum composition, disease incidence, and production traits in young calves. Influence of the journey duration. Annales de Recherches Vétérinaires 13: 369384.
Mount, L. E. 1974. The concept of thermal neutrality. In Heat loss from animals and man (ed. Monteith, J. L. and Mount, L. E.), pp. 425439. Butterworths, London.
Mount, L. E. 1979. Adaptation to the thermal environment: man and his productive animals. Edward Arnold, London.
Okamoto, M., Robinson, J. B., Christopherson, R. J. and Young, B. A. 1986. Summit metabolism of newborn calves with and without colostrum feeding. Canadian Journal of Animal Science 66: 937944.
Peet, G. F. V. van der, Verstegen, M. W. A. and Koops, W. J. 1987. A formula to describe the relation between heat production at thermoneutral as well as below thermoneutral temperatures simultaneously. In Energy metabolism in farm animals: effects of housing, stress and disease (ed. Verstegen, M. W. A. and Henken, A. M.), pp. 150163. Martinus Nijhoff, Dordrecht.
Poczopko, P. 1981. The environmental physiology of juvenile animals. In Environmental aspects of housing for animal production (ed. Clark, J. A.), pp. 109130. Butterworths, London.
Roy, J. H. B., Huffman, C. F. and Reineke, E. P. 1957. The basal metabolism of the newborn calf. British Journal of Nutrition 11: 373381.
Schrama, J. W., Hel, W. van der, Arieli, A. and Verstegen, M. W. A. 1992. Alteration of energy metabolism of calves fed below maintenance during 6 to 14 days of age. Journal of Animal Science 70: 25272532.
Schrama, J. W., Hel, W. van der, and Verstegen, M. W. A. 1991. Thermal demand of one-week-old calves at two feeding levels. In New trends in veal calf production (ed. Metz, J. H. M. and Groenestein, C. M.), European Association for Animal Production Publication No. 52, pp. 123126. Pudoc, Wageningen.
Scibilia, L. S., Muller, L. D., Kensinger, R. S., Sweeney, T. F. and Shellenberger, P. R. 1987. Effect of environmental temperature and dietary fat on growth and physiological responses of newborn calves. Journal of Dairy Science 70: 14261433.
Statistical Analysis Systems Institute. 1985. SAS user's guide: statistics, version 5 edition. SAS Institute Inc., Cary, NC.
Verstegen, M. W. A., Hel, W. van der, Brandsma, H. A., Henken, A. M. and Bransen, A. M. 1987. The Wageningen respiration unit for animal production research: a description of the equipment and its possibilities. In Energy metabolism in farm animals: effects of housing, stress and disease (ed. Verstegen, M. W. A. and Henken, A. M.), pp. 2148. Martinus Nijhoff, Dordrecht.
Webster, A. J. F. 1976. The influence of the climatic environment on metabolism in cattle. In Principles of cattle production (ed. Swan, H. and Broster, W. H.), pp. 103120. Butterworths, London.
Webster, A. J. F., Gordon, J. G. and McGregor, R. 1978. The cold tolerance of beef and dairy type calves in the first weeks of life. Animal Production 26: 8592.
Webster, A. J. F., Saville, C., Church, B. M., Gnanasakthy, A. and Moss, R. 1985. Some effects of different rearing systems on health, cleanliness and injury in calves. British Veterinary Journal 141: 472483.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed