Skip to main content Accessibility help

Meat quality of Boer goat kids and Mutton Merino lambs 2. Sensory meat evaluation

  • R. Sheridan (a1), L.C. Hoffman and A.V. Ferreira


The meat palatability, water-holding capacity, colour and shear force values of 32 Boer goat (BG) kids and 32 South African Mutton Merino (MM) lambs were investigated. Two pelleted diets (offered to 16 animals per species) with either a low (LE, 9·9 MJ/kg dry matter (DM)) or a high (HE, 12·1 MJ/kg DM) metabolizable energy level were given to the animals for either 28 or 56 days. Thereafter the animals were slaughtered, the meat cooked and presented to a trained sensory panel. Organoleptically, a difference between goat and lamb was noted. Each one had a specific species flavour, which was not influenced by energy level of the diet. BG meat was perceived to be stringier than that of the MM, but there was no significant difference in Warner-Bratzler shear force values. Tenderness declined with age in both species and there was also a tendency for goat meat to be less juicy than lamb. Chevon had a more pronounced after-taste than lamb. No objective difference could be distinguished between the colour of the cooked goat and lamb, but there was a tendency for fresh lamb to have a higher a*-value (redness) than goat. Although diet did not influence drip loss, drip loss increased with an increase in slaughter age. Only after 56 days did the m. semimembranosus of MM have a significantly higher drip loss than that of BG (LE: 4·84 v. 3·43%; HE: 4·72 v. 3·23%). In the m. semimembranosus of both species cooking loss increased with an increase in slaughter age. It can be concluded that goat meat compares favourably with lamb in terms of water-holding capacity, colour and shear force values. If goats are finished in the feedlot, it can be done on a LE diet, since diet does not influences any of the mentioned characteristics. This may render a direct economic advantage for BG feedlot finishing.


Corresponding author

Corresponding author. E-mail:


Hide All
Babiker, S.A., El Khider, I.A. and Shafie, S.A. 1990. Chemical composition and quality attributes of goat meat and lamb. Meat Science 28: 273277.
Carlucci, A., Girolami, A., Napolitano, F. and Monteleone, E. 1998. Sensory evaluation of young goat meat. Meat Science 50: 131136.
Crouse, J.D., Field, R.A., Chant, J.L. Jr.,, Ferrell, C.L., Smith, G.M. and Harrison, V.L. 1978. Effect of dietary energy intake on carcass composition and palatability of different weight carcasses from ewe and ram lambs. Journal of Animal Science 47: 12071218.
Dryden, F.D. and Marchello, J.A. 1970. Influence of total lipid and fatty acid composition upon the palatability of three bovine muscles. Journal of Animal Science 31: 3641.
Field, R.A., Williams, J.C., Ferrell, C.L., Crouse, J.D. and Kunsman, J.E. 1978. Dietary alteration of palatability and fatty acids in meat from light and heavy weight ram lambs. Journal of Animal Science 47: 858864.
Forrest, J.C., Aberle, E.D., Hendrick, H.B., Judge, M.D. and Merkel, R.A. 1975. Title to be inserted. In Principles of meat science (ed. Schweigert, B.S.), pp. 0000. Freeman, San Francisco CA.
Gaili, S.E. and Ali, A.S. 1985. Meat from Sudan desert sheep and goats. 1. Carcass yield, offals and distribution of carcass tissues. Meat Science 13: 217227.
Gaili, S.E., Ghanem, Y.S. and Mukhtar, A.M.S. 1972. A comparative study of some carcass characteristics of Sudan desert sheep and goats. Animal Production 14: 351357.
Honikel, K.O. 1998. Reference methods for the assessment of physical characteristics of meat. Meat Science 49: 447457.
Johnson, D.D., McGowen, C.H., Nurse, B. and Anous, M.R. 1995. Breed type and sex effects on carcass traits, composition and tenderness of young goats. Small Ruminant Research 17: 5763.
Kirton, A.H. 1970. Body and carcass composition and meat quality of the New Zealand feral goat (Capra hircus). New Zealand Journal of Agricultural Research 13: 167181.
Naudé, R.T. and Hofmeyr, H.S. 1981. Meat production. In Goat production (ed. Gall, C.), pp. 285307. Academic Press, New York.
Owen, J.E. and Norman, G.A. 1977. Studies of the meat production characteristics of Botswana goats and sheep. 2. General body composition, carcass measurements and joint composition. Meat Science 1: 283306.
Risvik, E. 1994. Sensory properties and preferences. Meat Science 36: 6777.
Roessler, E.B., Pangborn, R.M., Sidel, J.L. and Stone, H. 1978. Expanded statistical tables for estimating significance in paired-preference, paired-difference, duo-trio and triangle tests. Journal of Food Science 43: 940947.
Schönfeld, H.C., Naudé, R.T., Bok, W., Heerden, S.M. van, Smit, R. and Boshoff, E. 1993a. Flavour- and tenderness-related quality characteristics of goat and sheep meat. Meat Science 34: 363379.
Schönfeld, H.C., Naudé, R.T., Bok, W., Heerden, S.M. van, Sowden, L. and Boshoff, E. 1993b. Cooking and juiciness-related quality characteristics of goat and sheep meat. Meat Science 34: 381394.
Sheridan, R., Ferreira, A.V. and Hoffman, L.C. 2002. Production efficiency of SA Mutton Merino lambs and Boer goat kids receiving either a low or a high energy feedlot diet. Small Ruminant Research In press.
Sheridan, R., Hoffman, L.C. and Ferreira, A.V. 2003. Meat quality of Boer goat kids and Mutton Merino lambs. 1. Commercial yields and chemical composition. Animal Science 76: 6371.
Smith, G.C., Pike, M.I. and Carpenter, Z.L. 1974. Comparison of the palatability of goat meat and meat from four other animal species. Journal of Food Science 39: 11451146.
Statistical Analysis Systems Institute. 1990. SAS/STAT user’s guide version 6, fourth edition. SAS Inc., Cary, NC.
Webb, E.C., Bosman, M.J.C. and Casey, N.H. 1994. Dietary influences on subcutaneous fatty acid profiles and sensory characteristics of Dorper and SA Mutton Merino wethers. South African Journal of Food Science and Nutrition 6: 4550.


Meat quality of Boer goat kids and Mutton Merino lambs 2. Sensory meat evaluation

  • R. Sheridan (a1), L.C. Hoffman and A.V. Ferreira


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed