Skip to main content Accessibility help

Growth and body composition of Omani local sheep 2. Growth and distribution of musculature and skeleton

  • O. Mahgoub (a1) and G. A. Lodge (a1)


Distribution of tissue weight in the musculature and skeleton was studied in ram, wether and ewe Omani sheep raised under an intensive management system and slaughtered over the range 18 to 38 kg live weight. Ram lambs had higher muscle weight in the forequarters than wether and ewe lambs whereas the latter ‘sexes’ had heavier hindquarters and slightly more muscle in the muscle groups of proximal hind- and forelimbs and those surrounding the spinal column. Some of the neck region muscles, e.g. m. splenius and m. longissimus capitis et atlantis, were more developed in ram than in wether and ewe lambs. The proportions in the side muscle weight of some muscles (mainly in the hindquarter) decreased with increased slaughter weight whereas others (mainly in forequarter) increased, with the majority of the muscles showing no significant slaughter weight effects. The magnitude of change in proportions of individual muscles with increased slaughter weight was small and unlikely to have a commercial impact on meat production from Omani sheep.

As a proportion of total carcass bone, the axial skeleton and the hindlimb decreased with increased slaughter weight whereas the forelimb did not show a significant change. Ram lambs had heavier individual bones than wether and ewe lambs and higher proportions of the axial skeleton and lower proportions of the hindlimb than wethers at 28 kg live weight. There were few differences between the various ‘sexes’ in length, width or circumference of bones. Except for the 12th rib, individual bones, in all sexes, grew at a rate lower than empty body weight.

It is suggested that future improvement of Omani sheep should take into consideration the high proportion of bone in the carcass of these animals as well as the relatively higher proportion of bone in the limbs than in the axial skeleton.



Hide All
Brannang, E. 1971. Studies on monozygous cattle twins. XXIII. The effect of castration and age of castration on the development of single muscle, bones and special sex characters. Part II. Swedish Journal of Agricultural Research 1:6978.
Butler-Hogg, B. W. and Brown, A. J. 1986. Muscle weight distribution in lambs: a comparison of entire male and female. Animal Production 42:343348.
Butler-Hogg, B. W. and Whelehan, O. P. 1987. Muscle growth and distribution of muscle weight in Clun and Southdown sheep. Animal Production 44:133142.
Butterfield, R. M. 1988. New concepts of sheep growth. Department of Veterinary Anatomy, University of Sydney, Australia.
Edriss, M. A. 1992. Relationships between live body and bone measurements and body weight, carcass weight and carcass components in ram lambs. Journal of Agricultural Science and Technology (Islamic Republic of Iran) 1:4348.
Hammond, J. 1932. Growth and development of mutton qualities in sheep. Oliver and Boyd, London.
Hooper, A. B. C. 1978. Bone length and muscle weight in mice subjected to genetic selection for the relative length of the tibia and radius. Life Sciences 22:283286.
Huxley, J. 1932. Problems of relative growth. Methuen, London.
Jones, S. D. M., Burgess, T. D. and Dupchak, K. 1983. Effects of dietary energy intake and sex on carcass tissue and offal growth in sheep. Canadian Journal of Animal Science 63:303314.
Jury, K. E., Fourie, P. D. and Kirton, A. H. 1977. Growth and development of sheep. IV. Growth of the musculature. New Zealand Journal of Agricultural Research 20:115121.
Lodge, G. A. 1989. The university experience and perspective. First international symposium on agriculture and fisheries development in Oman. Ministry of Agriculture and Fisheries, Sultan Qaboos University, Muscat.
Mahgoub, O. 1988. Studies in normal and manipulated growth of sheep with special reference to skeletal growth. Ph.D. thesis, Lincoln College, University of Canterbury, New Zealand.
Mahgoub, O. and Lodge, G. A. 1994. Growth and body composition of Omani local sheep. 1. Live-weight growth and carcass and non-carcass characteristics. Animal Production 58:365372.
Pálsson, H. 1955. Conformation and body composition. In Progress in the physiology of farm animals. Vol. 2. (ed. Hammond, J.), pp. 430542. Butterworths, London.
Pálsson, H. and Verges, J. B. 1952. Effect of plane of nutrition on growth and development of carcass quality in lambs. Parts I and II. Journal of Agricultural Science, Cambridge 42:1149.
Statistical Analysis Systems Institute. 1985. SAS user's guide: statistics. Version 5.18. SAS Institute Inc., Cary, NC.
World Association of Veterinary Anatomists. 1972. Nomina anatomica veterinaria. International Committee on Veterinary Anatomical Nomenclature.


Related content

Powered by UNSILO

Growth and body composition of Omani local sheep 2. Growth and distribution of musculature and skeleton

  • O. Mahgoub (a1) and G. A. Lodge (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.