Skip to main content Accessibility help

Estimates of parental-dominance and full-sib permanent environment variances in laying hens

  • I. Misztal (a1) and B. Besbes (a2)


Estimates of variance components for five egg traits on 26265 laying hens were obtained by restricted maximum likelihood (REML) using several models. In the DOMFS model, the effects included hatch group, additive genetic, full-sib, parental dominance and inbreeding depression. In the DOM model, the full-sib effect was eliminated. In the FS model, the parental dominance effect was eliminated. In the ADD model, both the full-sib and the dominance effects were eliminated. In the DOMFS model, the estimates of the full-sib variance were generally higher for egg production traits and lower for egg characteristics than those of the parental dominance variance. However, this model has partially failed in separating these two components. When the full-sib effect was removed from the model, almost all of its estimated variance moved to the estimated parental dominance variance. When the parental dominance effect was removed from the model, almost all of its estimated variance moved to the estimated full-sib variance. The estimates obtained with REML and the DOM model were compared with those obtained by method R and tilde-hat methodologies. The d2 (ratio of dominance variance to total variance) differed by up to 86% for method R and up to 225% for tilde-hat. The h2 differed by up to 26 and 28%, respectively. For data sets that are too large to be analysed with REML, method R is a feasible alternative. A model for estimation of dominance variance should also include the full-sib or a similar effect, provided the data set is large. Similarly, to analyse egg production traits, the model should include at least the full-sib effect.



Hide All
Bernon, D. E. and Chambers, J. R. 1985. Maternal and sex-linked genetic effects in broiler parent stocks. Poultry Science 64: 2938.
Besbes, B. and Gibson, J. P. 1999. Genetic variation of egg production traits in purebred and crossbred laying hens. Animal Science 68: 433439.
Brade, W. and Groeneveld, E. 1996. Importance of special combining ability in dairy breeding. Proceedings of the 47th annual meeting of the European Association for Animal Production, Lillehammer, Norway, p. 13.
Cantet, R. J. C. and Birchmeier, A. N. 1998. The effects of sampling selected data on method R estimates of h2. Proceedings of the sixth world congress on genetics applied to livestock production, Armidale, NSW, Australia, vol. 25, pp. 529532.
Chang, H. A. 1988. Studies on estimation of genetic variances under non-additive gene action. >Ph.D. dissertation, University of Illinois, Urbana, USA.
Culbertson, M. S., Mabry, J. W., Misztal, I. and Bertrand, J. K. 1997. Effects of inbreeding and outbreeding in purebred Hampshire and Duroc swine. Professional Animal Scientist 13: 194197.
Dempster, A. P., Laird, N. M. and Rubin, D. B. 1977. Maximum likelihood from incomplete data via the EM algorithm. Journal of Royal Statistics Society B 39: 138.
Fairfull, R. W. 1990. Heterosis. In Poultry breeding and genetics (ed. Crawford, R. D.), pp. 913933. Elsevier, Amsterdam.
Fairfull, R. W. and Gowe, R. S. 1986. Use of breed resources for poultry egg and meat production. Proceedings of the third world congress on genetics applied to livestock production, Lincoln, vol. X, pp. 242256.
Fairfull, R. W., Gowe, R. S. and Nagai, J. 1987. Dominance and epistasis in heterosis of White Leghorn strain crosses. Canadian Journal of Animal Science 67: 663680.
Falconer, D. S. 1981. Introduction to quantitative genetics, second edition. Longman, New York.
Gengler, N., Misztal, I., Bertrand, J. K. and Culbertson, M. S. 1998. Estimation of dominance variance for post weaning gain in the US Limousin population. Journal of Animal Science 76: 25152520.
Henderson, C. R. 1989. Prediction of merits of potential matings from sire-maternal grandsire models with nonadditive genetic effects. Journal of Dairy Science 72: 25922605.
Hill, G. H. 1999. Advances in quantitative genetics theory. Proceedings of the meeting ‘From Jay Lush to genomics: visions for animal breeding and genetics’, pp. 3546. Iowa State University, Ames, IA.
Höeschele, I. and VanRaden, P. M. 1991. Rapid inversion of dominance relationship matrices for noninbred populations by including sire by dam subclass effects. Journal of Dairy Science 74: 557569.
Misztal, I. 1997. Estimation of variance components with large-scale dominance models. Journal of Dairy Science 80: 965974.
Misztal, I. 1998. REMLF90 manual. Web site at
Misztal, I., Fernando, R. L., Grossman, M., Lawlor, T. J. and Lukaszewicz, M. 1995. Dominance and epistatic effects in genetic evaluation of farm animals. Animal Science Papers and Reports 13: 251266.
Reverter, A., Golden, B. L., Bourdon, R. M. and Brinks, J. S. 1994. Method R variance components procedure: application on the simple breeding value model. Journal of Animal Science 72: 22472253.
Rye, M. and Mao, I. L. 1998. Nonadditive genetic effects and inbreeding depression for body weight in Atlantic salmon (Salmo salar L.). Livestock Production Science 57: 1522.
Sheridan, A. K. and Randall, M. C. 1977. Heterosis for egg production in White Leghorn Australorp crosses. British Poultry Science 18: 6977.
VanRaden, P. M. and Jung, Y. C. 1988. A general purpose approximation to restricted maximum likelihood: the tilde-hat approach. Journal of Dairy Science 71: 187194.
VanRaden, P. M., Lawlor, T. J., Short, T. H. and Höschele, I. 1992. Use of reproductive technology to estimate variances and predict effects of gene interactions. Journal of Dairy Science 75: 28922901.
Wei, M. and Werf, J. H. J. van der. 1993. Animal model estimation of additive and dominance variances in egg production traits of poultry. Journal of Animal Science 71: 5765.


Related content

Powered by UNSILO

Estimates of parental-dominance and full-sib permanent environment variances in laying hens

  • I. Misztal (a1) and B. Besbes (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.