Skip to main content Accessibility help
×
Home

Effects of nutrition on hormone profiles and patterns of deiodinase activity in the skin and associated patterns of hair follicle activity and moult in cashmere goats

  • S. M. Rhind (a1), C. E. Kyle (a1), D. J. Riach (a1) and E. I. Duff (a2)

Abstract

The effects of nutrition on patterns of live-weight change, hair follicle activity, moult, hormone profiles and associated activities of monodeiodinase enzyme types II and III (MDII and MDIII) in cashmere goats were investigated. From 1 week before the winter solstice (mid December), one group of 15 animals was given a ration designed to provide 2·0 × live weight maintenance requirements (high; H) while a second, similar, group was given 0·8 × live weight maintenance requirements (low; L). After approximately 3 months, L animals had significantly lower mean live weights (P<0·01) than H animals. This was associated with lower (P<0·05) overall mean hair follicle activity in L than H animals during the March to May period and a lower overall mean moult score during March and April in L animals (P<0·01) but a similar mean date of moult onset. Mean concentrations of all of the hormones measured exhibited significant changes (P<0·01) with date of sampling. Overall mean concentrations of insulin, tri-iodothyronine and thyroxine did not differ with treatment but, compared with L animals, H animals exhibited higher mean concentrations of prolactin in April and May (P<0·05) and of insulin-like growth factor-1 in December and January (P<0·001). Rates of activity of MDII and MDIII in skin differed with date (P<0·001) but were not significantly affected by nutritional treatment. The MDIII/MDII ratio differed (P=0·05) with month but was significantly higher (P<0·05) in L than H animals in January, only. It is concluded that the reduction in hair follicle activity and the slower onset of moult associated with reduced nutrition were unlikely to be controlled, directly, by differences in activities of MDII or MDIII in skin tissue.

Copyright

Corresponding author

References

Hide All
Agricultural Research Council. 1980. Nutritional requirements of ruminant livestock. Commonwealth Agricultural Bureaux, Slough, UK.
Beckett, G. J. and Arthur, J. A. 1994. The iodothyroinine deiodinases and 5′-deiodination. In Clinical endocrinology and metabolism (Sheppard, M. D. and Stewart, P. M.), pp. 285305. Ballière Tindall, London.
Bruce, L. A., Atkinson, T., Hutchinson, J. S. M.Shakespear, R. A. and MacRae, J. C. 1991. The measurement of insulin-like growth factor I in sheep plasma. Journal of Endocrinology 128: R1R4.
Choy, V. J., Nixon, A. J. and Pearson, A. J. 1997. Distribution of prolactin receptor immunoreactivity in ovine skin and changes during the wool follicle growth cycle. Journal of Endocrinology 155: 265275.
Dicks, P., Russel, A. J. F. and Lincoln, G. A. 1994. The role of prolactin in the reactivation of hair follicles and the spring moult in goats. Journal of Endocrinology 143: 441448.
Forbes, J. M., Driver, P. M., El-Shahat, A. A. and Boaz, T. G. 1975. The effect of daylength and level of feeding on serum prolactin in growing lambs. Journal of Endocrinology 64: 549554.
Harris, P. M., McBride, B. W., Gurnsey, M. P., Sinclair, B. R. and Lee, J. 1993. Direct infusion of a variant of insulin-like growth factor-1 into the skin of sheep and effects on local blood flow, amino acid utilization and cell replication. Journal of Endocrinology 139: 463472.
McGregor, B. A. 1998. Nutrition, management and other environmental influences on the quality and production of mohair and cashmere with particular reference to Mediterranean and annual temperate climatic zones: a review. Small Ruminant Research 28: 199215.
McNeilly, A. S. and Andrews, P. 1974. Purification and characterisation of caprine prolactin. Journal of Endocrinology 60: 359367.
MacRae, J. C., Bruce, L. A., Hovell, F. D. deB.Hart, I. C., Inkster, J. and Atkinson, T. 1991. Influence of protein nutrition on the response of growing lambs to exogenous bovine growth hormone. Journal of Endocrinology 130: 5361.
Merchant, M. and Riach, D. J. 1996. Changes in the coat of cashmere goat kids of two different genotypes from birth to 13 months of age. Animal Science 62: 317323.
Merchant, M. and Riach, D. J. 2002. The effect of plane of nutrition and shearing on the pattern of the moult in Scottish Cashmere goats. Animal Science 74: 177188.
Murphy, L. J., Tachibana, K. and Friesen, H. G. 1988. Stimulation of hepatic insulin-like growth factor-1 gene expression by ovine prolactin: evidence for intrinsic somatogenic activity in the rat. Endocrinology 122: 20272033.
Nicol, F., Lefranc, H., Arthur, J. R. and Trayhurn, P. 1994. Characterization and postnatal development of 5′-deiodinase activity in goat perirenal fat. American Journal of Physiology 267: R144R149.
Nixon, A. J. 1993. A method for determining the activity state of hair follicles. Biotechnic and Histochemistry 68: 316325.
Nixon, A. J., Ford, C. A., Oldham, J. M. and Pearson, A. J. 1997. Localisation of insulin-like growth factor receptors in skin follicles of sheep ( Ovis aries ) and changes during an induced growth cycle. Comparative Biochemistry and Physiology 118A 12471257.
Rhind, S. M., Kyle, C. E. and Duff, E. I. 2004. Effects of season and of manipulation of circulating prolactin concentrations on deiodinase activity in cashmere goat skin. Australian Journal of Agricultural Research 55: 211221.
Rhind, S. M. and Kyle, C. E. 2004. Skin deiodinase profiles and associated patterns of hair follicle activity in cashmere goats of contrasting genotypes. Australian Journal of Agricultural Research 55: 443448.
Rhind, S. M. and McMillen, S. R. 1995a. Seasonal patterns of secondary fibre growth, moulting and hair follicle activity in Siberian and Icelandic × Scottish feral goats offered high and low levels of protein. Small Ruminant Research 16: 6976.
Rhind, S. M. and McMillen, S. R. 1995b. Seasonal changes in systemic hormone profiles and their relationship to patterns of fibre growth and moulting in goats of contrasting genotypes. Australian Journal of Agricultural Research 46: 12731283.
Rhind, S. M. and McMillen, S. R. 1996. Effects of methylthiouracil treatment on the growth and moult of cashmere fibre in goats. Animal Science 62: 513520.
Richards, M. W., Spicer, L. J. and Wetteman, R. P. 1995. Influence of diet and ambient temperature on bovine serum insulin-like growth factor-1 and thyroxine: relationships with non-esterified fatty acids, glucose, insulin, luteinizing hormone and progesterone. Animal Reproduction Science 37: 267279.
Russel, A. J. F. 1992. Fibre production from sheep and goats. In Progress in sheep and goat research (ed. Speedy, A. W.), pp. 235256, CAB International, Oxon.
Ryder, M. 1960. A study of the coat of the mouflon ( Ovis musimon ) with special reference to seasonal change. Proceedings of the Zoological Society of London 135: 387405.
Ryder, M. L. and Stephenson, S. K. 1968. Wool growth. Academic Press, London.
Villar, D., McMillen, S. R., Dicks, P. and Rhind, S. M. 2000a. The roles of thyroid hormones and prolactin in the control of fibre moult and associated changes in hair follicle activities in cashmere goats. Australian Journal of Agricultural Research 51: 407414.
Villar, D., Nicol, F., Arthur, J. R., Dicks, P., Cannavan, A., Kennedy, D. G. and Rhind, S. M. 2000b. Type II and type III monodeiodinase activites in the skin of untreated and propylthiouracil-treated cashmere goats. Research in Veterinary Science 68: 119123.

Keywords

Effects of nutrition on hormone profiles and patterns of deiodinase activity in the skin and associated patterns of hair follicle activity and moult in cashmere goats

  • S. M. Rhind (a1), C. E. Kyle (a1), D. J. Riach (a1) and E. I. Duff (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed