Skip to main content Accessibility help

The effect of active immunization against gonadotropin-hormone-releasing-hormone on growth performance and sample joint composition of bulls

  • G. E. Lobley (a1), A. Connell (a1), B. Morris (a2), R. Anderson (a1), J. Clayton (a2), P. E. V. Williams (a1) and I. M. Nevison (a1)...


Forty-six Simmental × British Friesian bull calves were allocated to six treatment groups. In four groups (each of eight animals) half the animals were given a prime injection of gonadotropin-hormone-releasing-hormone (GnRH) either as the decapeptide or as an octapeptide (residues 3 to 10) conjugated to egg albumen. Prime injection times were at 3, 4, 5 or 6 months of age. All animals were boosted with a GnRH conjugate, similar to that used for the prime injection, at 8 months. At 8 months, six other animals were surgically castrated while the remaining eight were left as untreated bull controls. Weight gain and consumption of a barley-based diet offered ad libitum were recorded for individual animals. Blood samples were taken at a minimum of fortnightly intervals and the serum analysed for antibody titre against GnRH, testosterone and insulin-like growth factor 1 (IGF-1). Animals were slaughtered at 12 months and chemical analyses performed on the dissectible material of the 10th rib for protein, lipid, ash and water content. Greater antibody titres and a longer period of low serum testosterone were achieved with the octapeptide conjugate compared with the decapeptide. Serum IGF-1 slowly decreased following both surgical- and effective immuno-castration. There were no significant differences in food intake between the groups. Both steers and the more responsive immunocastrates had higher fat (P < 0·01), lower protein (P < 0·05) and water concentrations (P < 0·01) in tissues from a rib sample joint compared with untreated bulls. As immuno-responsiveness decreased there were indications of compensatory changes in body composition. The technique may be applicable during periods of, for example, mixed grazing for bulls.



Hide All
Atkinson, T., Fowler, V. R., Garton, G. A. and Lough, A. K. 1972. A rapid method for the accurate determination of lipid in animal tissue. Analyst, London 97: 562568.
Bruce, L. A., Atkinson, T., Hutchinson, J. S. M., Shakespeare, R. A. and Macrae, J. C. 1991. The measurement of insulin-like growth factor 1 in sheep plasma. Journal of Endocrinology 128: R1–R4.
Cochran, W. G. and Cox, G. M. 1950. Experimental design, pp. 9193. John Wiley, London.
Davidson, J., Mathieson, J. and Boyne, A. W. 1970. The use of automation in determining nitrogen by the Kjeldahl method, with final calculations by computer. Analyst, London 95: 181193.
Davis, S. L., Ohlson, D. L., Klindt, J. and Anfinson, M. S. 1977. Episodic growth hormone secretory patterns in sheep: relationship to gonadal steroid hormones. American journal of Physiology 233: E519-E523.
Early, R. J., McBride, B. W. and Bull, R. O. 1990. Growth and metabolism in somatotropin-treated steers. II. Carcass and non-carcass tissue components and chemical composition, journal of Animal Science 68: 41444152.
Enright, W. J., Quirke, J. F., Gluckman, P. D., Breier, B. H., Kennedy, L. G., Hart, I. C., Roche, J. F., Coert, A. and Allen, P. 1990. Effects of long-term administration of pituitary-derived bovine growth hormone and estradiol on growth in steers, journal of Animal Science 68: 23452356.
Fletcher, J. M., Lobley, G. E. and Connell, A. 1986. Effects of growth and body composition of androgen deprivation by castration or autoimmunization to LH-releasing hormone in the male rat under conditions of controlled food intake, journal of Endocrinology 110: 97102.
Fraser, H. M., Gunn, A., Jeffcoate, S. L. and Holland, D. T. 1974. Preparation of antisera to luteinizing hormone releasing hormone, Journal of Endocrinology 61: IX–X.
Fraser, H. M., Sharpe, R. M., Lincoln, G. A. and Harmer, A. J. 1982. LHRH antibodies: their use in the study of hypothalamic LHRH and testicular LHRH-like material, and possible contraceptive applications. In Progress towards a male contraceptive (ed. Jeffcoate, S. L. and Sandier, M.), pp 4178. John Wiley, Chichester.
Gonzalez, A., Goubau, S., Allen, A. F., Mapletoft, R. J., Cohen, R. and Murphy, B. D. 1990. The potential for castration of domestic animals by active immunisation against GnRH. In Livestock production in Latin America, pp 269284. International Atomic Energy Agency, Vienna.
Hannon, K., Gronowski, A. and Trenkle, A. 1991. Relationship of liver and skeletal muscle IGF-1 mRNA to plasma GH profile, production of IGF-1 by liver, plasma IGF-1 concentrations, and growth rates of cattle. Proceedings of the Society for Experimental Biology and Medicine 155163.
Hedrick, H. B., Thompson, G. B. and Krause, G. F. 1969. Comparison of feedlot performance and carcass characteristics of half-sib bulls, steers and heifers, journal of Animal Science 29: 687694.
Jeffcoate, S. L., Fraser, H. M., Gunn, A. and Holland, D. T. 1974. Preparation and specificity of antibodies to the decapeptide, luteinizing hormone-releasing hormone. Immunochemistry. 11: 7577.
Jones, A. S., Innes, G. M., Robertson, I. S. and Fraser, H. M. 1983. Control of growth in cattle and its potential application in systems of beef production. In Immunological approaches to the regulation of growth and reproduction animals, pp. 3553. Agricultural Research Council, London.
Keeling, B. J. and Crighton, D. B. 1983. Immunizing against gonadotrophin-releasing hormone in sheep. In Immunological approaches to the regulation of growth reproduction in animals, pp. 6669. Agricultural Research Council, London.
Keeling, B. J. and Crighton, D. B. 1984. Reversibility of the effects of active immunisation against LH-RH. In Immunological aspects of reproduction in mammals (ed. , Crighton), pp. 379397. Butterworths, London.
Lobley, G. E., Connell, A., Milne, E., Buchan, V., Calder, A. G., Anderson, S. E. and Vint, H. 1990. Muscle protein synthesis in response to testosterone administration in wether lambs. British journal of Nutrition 64: 691704.
Mayer, M. and Rosen, F. 1977. Interaction of glucocorticoids and androgens with skeletal muscle. Metabolism 26: 937962.
Moore, C. A., McLauchlan, W., Doherty, M. J., McCaughey, W. J. and Moss, B. W. 1989. Performance and behaviour of four sex conditions in male suckled calves. In New techniques in cattle production (ed. Phillips, C. J. C.), 241242. Butterworths, London.
Morris, B. A. 1985. Principles of immunoassay. In Immunoassay in food analysis (ed. Morris, B. A. and Clifford, M. N), pp. 2831. Elsevier Applied Science Publishers, London.
Morris, B. A. and Clifford, M. N. 1985. Immunoassays in food analysis. Elsevier Applied Science Publishers, London.
Morrison, C. A., Fishleigh, R. V., Ward, D. J. and Robson, B. 1987. Computer-aided design and physiological testing of a Iuteinising hormone-releasing hormone analogue for ‘adjuvant-free’ immunocastration. FEBS Letters 214: 6570.
Nam, T. J., Noguchi, T., Funabiki, R., Kato, H., Miura, Y. and Naito, H. 1990. Correlation between the urinary excretion of acid soluble peptides, fractional synthesis rate of whole body proteins, and plasma immunoreactive insulin-like growth factor-1/somatomedin C concentration i n the rat. British Journal of Nutrition 63: 515520.
Pell, J. M., Elcock, C., Harding, R. L., Morrell, D. J., Simmonds, A. D. and Wallis, M. 1990. Growth, body. composition, hormonal and metabolic status in lambs treated long-term with growth hormone. British Journal Nutrition 63: 431445.
Renaville, R., Massart, S., Sneyers, M., Kettmann, R., Burny, A. and Portetelle, D. 1991. The relationship of testosterone with insulin-like growth-factor-1 (IGF-1) and IGF-1 binding protein during puberty in cattle. Proceedings of the second international symposium on insulin-like factors/somatomedins, p. 192.
Robertson, I. S., Fraser, H. M., Innes, G. M. and Jones, A. S. 1982. Effect of immunological castration on sexual and production characteristics in male cattle. Veterinary Record 111: 529531.
Robertson, I. S., Wilson, J. C., Fraser, H. M., Innes, G. M. and Jones, A. S. 1984. Immunological castration of young bulls for beef production. In Manipulation of growth in farm animals (ed. Roche, J. F. and O'Callaghan, D.), pp. 137145. Martinus Nijhoff, The Hague.
Rowe, P. H., Lincoln, G. A., Racey, P. A., Lehane, J., inStephenson, M. J., Shenton, J. C. and Glover, T. D. 1974. Temporal variations of testosterone levels in the peripheral blood plasma of men. journal of Endocrinology 61: 6373.
Schanbacher, B. D. 1982. Responses of ram lambs to active immunisation against testosterone and luteinizing hormone releasing hormone. American Journal of Physiology 242: E202–E205.
Schanbacher, B. D., Crouse, J. D. and Ferrell, C. L. 1980. Testosterone influences on growth, performance, carcass characteristics and composition of young market lambs. Journal of Animal Science 51: 685691.
Singh, S. B., Galbraith, H., Scaife, J. R. and Hunter, E. A. 1985. Effects of oestrogenic and androgenic compounds on growth and body composition of male castrate lambs. Proceedings of the Nutrition Society 44:93A.
Singh, V. 1986. Significance of C-terminus of decapeptide luteinizing hormone releasing hormone (LHRH) in antibody recognition. Indian Journal of Experimental Biology 24: 1518.


Related content

Powered by UNSILO

The effect of active immunization against gonadotropin-hormone-releasing-hormone on growth performance and sample joint composition of bulls

  • G. E. Lobley (a1), A. Connell (a1), B. Morris (a2), R. Anderson (a1), J. Clayton (a2), P. E. V. Williams (a1) and I. M. Nevison (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.