Skip to main content Accessibility help

An evaluation of the Gompertz model in degradability studies of forage chemical components

  • A. Lavrenčič (a1), B. Stefanon (a2) and P. Susmel (a2)


The in situ dry matter (DM) and neutral-detergent fibre (NDF) degradability kinetics of eight forages (four grass hays and four legume hays, harvested at two different dates) were compared to assess the fitting ability of a first-order and a Gompertz model.

The Gompertz model fitted DM degradability data as well as the first-order model and differences between fitted and observed data for the two models were very small but the Gompertz model proved to be statistically superior for the NDF degradability data, especially for the early hours of incubation.

A numerical but not significant difference was observed in the estimated rapidly available fraction for DM and NDF, which zvas respectively lower (mean values 24·4 v. 27·8%) and higher (mean values 5·8 v. 1·8%) with the first-order model. More pronounced differences were observed for the estimates of total potential degradability of NDF, which were often significantly lower with the Gompertz model (average values for the eight forages 75·1 v. 72·3%;.

The sigmoidal shape of the Gompertz model was more biologically appropriate to describe the initial phases of NDF degradation and was thus applied to the cellulose and hemicellulose degradability data.

As the harvesting date progressed through the season, a decrease of the immediately available fraction of DM and nitrogen was generally observed but the effect of harvesting date was not so evident for fibre fractions; the differences within forages were very low. Correlation coefficients between lignin content and total potential degradability of fibre were always high (for NDF, r = −0·96; for hemicellulose r = −0·95; for cellulose r = −0·79; P < 0·001), while the acid-detergent fibre content influenced DM and nitrogen total potential degradability (r = −0·91 and −0·82, respectively).



Hide All
Akin, D. E. and Chesson, A. 1989. Lignification as the major factor limiting forage feeding value especially in warm conditions. Fifteenth international grassland Nice, France, pp. 17531760. INRA, Paris.
Association of Official Analytical Chemists. 1990. Official methods of analysis, 15th edition. Association of Official Analytical Chemists, Washington, DC.
Babnik, D. 1995. Some environmental effects on the relationship between in sacco degradability of protein and dry matter and chemical composition of Italian ryegrass. Archives of Animal Nutrition 48: 303317.
Balde, A. T., Vandersall, J. H., Erdman, R. A., Reeves, J. B. and Glenn, B. P. 1993. Effect of stage of maturity of alfalfa and orchardgrass on in situ dry matter and crude protein degradability and amino acid composition. Animal Feed Science and Technology 44: 2943.
Beuvink, J. M. W. and Kogut, K. 1993. Modelling gas production kinetics of grass silages incubated with buffered ruminal fluid. Journal of Animal Science 71: 10411046.
Bidlack, J. E. and Buxton, D. R. 1992. Content and deposition rates of cellulose, hemicellulose, and lignin during regrowth of forage grasses and legumes. Canadian Journal of Plant Science 72: 809818.
Brink, G. E. and Fairbrother, T. E. 1994. Cell wall composition of diverse clovers during primary spring growth. Crop Science 34: 16661671.
Buxton, D. R. 1989. In vitro digestion kinetics of temperate perennial forage legume and grass stems. Crop Science 29: 213219.
Buxton, D. R. and Brasche, M. R. 1991. Digestibility of structural carbohydrates in cool-season grass and legume forages. Crop Science 31: 13381345.
Chesson, A. 1993. Mechanistic models of forage cell wall degradation. In Forage cell wall structure and digestion (ed Jung, H. G., Buxton, D. R., Hatfield, R. D. and Ralph, J.), pp. 347376. American Society of Agronomy, Madison, WI.
Cockburn, J. E., Dhanoa, M. S., France, J. and Lopez, S. 1993. Overestimation of solubility by polyester bag methodology. Animal Production 56: 466467 (abstr.).
Commissione proteine nella nutrizione e nella alimentazione dei poligastrici. 1994. Valutazione degli alimenti di interesse zootecnico. 3. Degradabilita e valore proteico degli alimenti per ruminanti. Zootecnica e Nutrizione Animale 20: 281291.
Ford, C. W. and Elliott, R. 1987. Biodegradability of mature grass cell walls in relation to chemical composition and rumen microbial activity. Journal of Agricultural Science, Cambridge 108: 201209.
France, J. and Thornley, J. H. M. 1984. Growth functions. In Mathematical models in agriculture, pp. 7594. Butterworths, London.
Giger-Reverdin, S. 1995. Review of the main methods of cell wall estimation: interest and limits for ruminants. Animal Feed Science and Technology 55: 295334.
Goering, H. K. and Van Soest, P. J. 1970. Forage fiber analyses (apparatus, reagents, procedures and some applications). Agricultural handbook no. 379, ARS, USDA, Washington, DC.
Hoffman, P. C., Sievert, S. J., Shaver, R. D., Welch, D. A. and Combs, D. K. 1993. In situ dry matter, protein, and fiber degradation of perennial forages. Journal of Dairy Science 76: 26322643.
Iiyama, K., Lam, T. B. T. and Stone, B. A. 1994. Covalent cross-links in the cell wall. Plant Physiology 104: 315320.
Institut National de la Recherche Agronomique. 1988. Alimentation des bovins, ovins et caprins (ed. Jarrige, R.). INRA, Paris.
McDonald, I. 1981. A revised model for the estimation of protein degradability in the rumen. Journal of Agricultural Science, Cambridge 96: 251252.
Nocek, J. E. and Russell, J. B. 1988. Protein and energy as an integrated system. Relationship of ruminal protein and carbohydrate availability to microbial synthesis and milk production. Journal of Dairy Science 71: 20702107.
Ørskov, E. R. and McDonald, I. 1979. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. Journal of Agricultural Science, Cambridge 92: 499503.
Sauvant, D., Bertrand, D. and Giger, S. 1985. Variations and prevision of the in sacco dry matter digestion of concentrates and by-products. Animal Feed Science and Technology 13: 723.
Statistical Analysis Systems Institute. 1988. SAS/STAT user's guide, release 6·03 edition. SAS Institute Inc., Cary, NC
Van Milgen, J. and Baumont, R. 1995. Models based on variable fractional digestion rates to describe ruminal in situ digestion. British Journal of Nutrition 73: 793807.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed