Skip to main content Accessibility help
×
Home
Hostname: page-component-5bf98f6d76-sglwb Total loading time: 28.205 Render date: 2021-04-20T10:56:34.905Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Effects of dietary lipid composition on growth, food utilization and body composition of European eel (Anguilla anguilla)

Published online by Cambridge University Press:  18 August 2016

M. García-Gallego
Affiliation:
Departmentu de Biología Animal y Ecología, Facultad de Ciencias, Campus Fuentenueva, Universidad de Granada, 18071 Granada, Spain
H. Akharbach
Affiliation:
Departmentu de Biología Animal y Ecología, Facultad de Ciencias, Campus Fuentenueva, Universidad de Granada, 18071 Granada, Spain
M. de la Higuera
Affiliation:
Departmentu de Biología Animal y Ecología, Facultad de Ciencias, Campus Fuentenueva, Universidad de Granada, 18071 Granada, Spain
Get access

Abstract

Six experimental diets with similar contents of macronutrients (450, 300 and 70 g/kg dry matter of protein, carbohydrate and fat, respectively) and, therefore, total energy, hut differing in the composition of lipid component, were each given to three replicate groups of European eel. Different fat mixtures were used to formulate diets with different levels of fatty acids considered as essential for fish: linoleic (18: 2n6), linolenic (18: ЗпЗ) and highly unsaturated fatty acid (HUFA)n3, mainly EPA (20: 5n3) and DHA (22: 6n3). One tested diet contained low levels of all the three components, three diets had a high level of each one of these, the fifth diet contained high levels of both 18C fatty acids and, finally, a sixth diet incorporated simultaneously high amounts of 18: 2n6 and (HUFA)nЗ.

Dietary lipid composition did not significantly affect food intake or protein and fat apparent digestibility. However, growth and food efficiency were the best with the diet containing approximately 5 g/kg of both linoleic and linolenic acids. Although all groups increased their body fat content over the experiment, the fatty acid composition of total muscle lipids was rather insensitive to lipid dietary composition, perhaps due to the high body fat content of the eels prior to the experiment.

Type
Research Article
Copyright
Copyright © British Society of Animal Science 1999

Access options

Get access to the full version of this content by using one of the access options below.

References

Abrami, G., Natiello, F., Bronzi, P., McKenzie, D., Bolis, L. and Agradi, E. 1992. A comparison of highly unsaturated fatty acid levels in wild and farmed eels (Anguilla anguilla) . Comparative Biochemistry and Physiology 101B: 7982.Google Scholar
Akharbach, H. 1995. Valoración de diversas materias primas como fuentes de energía y nutrientes esenciales para el crecimiento de la anguila europea (Anguilla anguilla). Doctoral thesis, University of Granada.Google Scholar
Arai, S., Nose, T. and Hashimoto, Y. 1971. A purified test diet for the eel (Anguilla japónica L.). Bulletin of the Freshwater Fisheries Research Laboratory, Tokyo 221:161178.Google Scholar
Argyropoulos, V., Kalogeropoulos, N. and Alexis, M. N. 1992. Effect of dietary lipids on growth and tissue fatty acid composition of grey mullet (Mugil cephalus) . Comparative Biochemistry and Physiology 101:129135.CrossRefGoogle Scholar
Austreng, E., Skrede, A. and Eldegard, A. 1980. Digestibility of fat and fatty acids in rainbow trout and mink. Aquaculture 19: 9395.CrossRefGoogle Scholar
Bell, M. V., Henderson, R. J., Pirie, B. J. S. and Sargent, J. R. 1985. Effect of dietary polyunsaturated fatty acid deficiencies on mortality, growth and gill structure in the turbot (Scophthalmus maximus) . Journal of Fish Biology 26: 181191.CrossRefGoogle Scholar
Cho, C. Y. and Slinger, S. J. 1979. Apparent digestibility measurement in feedstuffs for rainbow trout. In Finfish nutrition andfishfeed technology volume II (ed. Halver, J. E. and K. Tiews), pp. 239248. Heeneman-Verlags, Berlin.Google Scholar
Cho, C. Y., Slinger, S. J. and Bayley, H. S. 1982. Bioenergetics of salmonoid fishes: energy intake, expenditure and productivity. Comparative Biochemistry and Physiology 73: 2541.Google Scholar
Corraze, G. 1997. Modulation of lipid composition and flesh quality of fish by the diet. Valicentre, annual symposium, Orleans, France, CRITT-Valicentre, pp. 4350.Google Scholar
Degani, G. 1986. Dietary effects of lipid source, lipid level and temperature on growth of glass eel (A. anguilla) . Aquaculture 65: 207214.CrossRefGoogle Scholar
Dosoretz, C.and Degani, G. 1987. Effect of fat rich diet and temperature on growth and body composition of European eels (Anguilla anguilla) . Comparative Biochemistry and Physiology 87A: 733736.CrossRefGoogle Scholar
Folch, J., Lees, M. and Stanley, G. H. S. 1957. A simple method for the isolation and purification of total lipids from animal tissues. Journal of Biological Chemistry 226: 497509.Google Scholar
García-Gallego, M. and Akharbach, H. 1998. Evolution of body composition of European eel during their growing phase in a fish farm, with special emphasis on the lipid component. Aquaculture International 6: 112.CrossRefGoogle Scholar
García-Gallego, M., Hidalgo, M. C., Suárez, M. D., Sanz, D. A. and Higuera, M. de la. 1993. Feeding of the European eel (Anguilla anguilla). II. Influence of dietary lipid level. Comparative Biochemistry and Physiology 105A: 171175.CrossRefGoogle Scholar
Greene, D. H. S. and Selivonchick, D. P. 1987. Lipid metabolism in fish. Progress in Lipid Research 26: 5385.CrossRefGoogle Scholar
Guillou, A., Soucy, P., Khalil, M. and Adambounou, L. 1995. Effects of dietary vegetable and marine lipid on growth, muscle fatty-acid composition and organoleptic quality of flesh of brook charr (Salvelinus fontinalis) . Aquaculture 116: 351362.Google Scholar
Kalogeropoulos, N., Alexis, M. N. and Henderson, R. J. 1991. Effect of dietary lipids on tissue fatty acid composition of gilthead bream (Sparus aurata) . In Fish nutrition in practice (ed. Kaushik, S. J. and Luquet, P.), pp. 257268. INRA Editions, Paris.Google Scholar
Kanazawa, A. 1985. Essential fatty acid and lipid requirement of fish. In Nutrition and feeding in fish (ed. Cowey, C. B., MacKie, A. M. and Bell, J. G.), pp. 281289. Academic Press, London.Google Scholar
Kanazawa, A., Sakimoto, M. and Awal, M. D. A. 1980. Requirement of Tilapia zillii for essential fatty acids. Bulletin of the Japanese Society of Scientific Fisheries 46: 13531356.CrossRefGoogle Scholar
Kissil, G. W., Youngson, A. and Cowey, C.B. 1987. Capacity of the European eel (A. anguilla) to elongate and desaturate dietary linoleic acid. Journal of Nutrition 117: 13791384.Google ScholarPubMed
Krajnovic-Ozretic, M., Najdek, M. and Ozretic, B. 1994. Fatty acids in liver and muscle of farmed and wild sea bass (Dicentrarchus labrax L.). Comparative Biochemistry and Physiology 109A: 611617.CrossRefGoogle Scholar
Kühne, H. 1973. Untersuchungen zur ver daulishkeit und ver wertung ver schiedener fetternischengen beim Aal (Anguilla anguilla) . Dissertation, University of Rostock.Google Scholar
Lescroart, O., Pacolet, W., Moshage, H., Yap, S. H., Schrijver, R. de and Ollevier, F. 1993. Elongation and desaturation of linolenic acid (18: 3n3) in isolated hepatocytes of the European eel (A. anguilla) . World Aquaculture ‘93, Torremolinos, Spain. E.A.S. special publication no. 19, p. 237, Oestende, Belgium.Google Scholar
Lie, O., Lied, E. and Lambertsen, G. 1986. Liver retention of fat and of fatty acids in cod (Gadus morhua) fed different oils. Aquaculture 59: 187196.CrossRefGoogle Scholar
Olsen, R. E. and Ringo, E. 1992. Lipids of arctic charr, Salvelinus alpinus (L). II. Influence of dietary fatty acids on the elongation and desaturation of linoleic and linolenic acid. Fish Physiology and Biochemistry 9: 393399.CrossRefGoogle ScholarPubMed
Otwell, W. S. and Rickards, W.-L. 1981. Cultured and wild American eels, Anguilla rostrata: fat content and fatty acid composition. Aquaculture 26: 6776.CrossRefGoogle Scholar
Sargent, J., Henderson, R. J. and Tocher, D. R. 1989. The lipids. In Fish nutrition (ed. Halver, J. E.), pp. 153217. Academic Press, Inc., NY.Google Scholar
Schade, R. 1982. Untersuchungnen zur Nahrungsausnutzung im Darm von Karpfen (Cyprinus carpio L.). Archiv für Hydrobiologie 59: (suppl.) 377415.Google Scholar
Schilling, H. O., Greuel, E. and Hartfield, W. 1982. Einsatz van pflanzlichen ölen in der produktion von espeisealen. Kraftfutter 65: 106110.Google Scholar
Schmitz, O., Greuel, E. and Pfeffer, E. 1982. Untersuchungen über Verdauung und Verwertung von organischen rohnahrstoffen durch wachsende Aale. Zeitschrift für Tierphysiologie und Tierernaehrung 48: 138143.CrossRefGoogle Scholar
Schwarz, F. J. and Kirchgessner, M. 1982. Zur bestimmung der nährstoffverdaulishkeit beim karpfen (Cyprinus carpio L.). I. Mitt. Bayer Landwirtschaftliches Jahrbuch. Aquarienaufbau und Versuchsmethodik 59: 7984.Google Scholar
Stickney, R. R. and Hardy, R. W. 1989. Lipid requirements of some warm water species. Aquaculture 79: 145156.CrossRefGoogle Scholar
Takeuchi, T., Arai, S., Watanabe, T. and Shimma, Y. 1980. Requirement of eel, Anguilla japónica, for essential fatty acids. Bulletin of the Japanese Society of Scientific Fisheries 46: 345353.CrossRefGoogle Scholar
Takeuchi, T. and Watanabe, T. 1977. Requirement of carp for essential fatty acids. Bulletin of the Japanese Society of Scientific Fisheries 43: 541551.CrossRefGoogle Scholar
Takeuchi, T. and Watanabe, T. 1979. Effect of excess amount of essential fatty acids on growth of rainbow trout. Bulletin of the Japanese Society of Scientific Fisheries 45: 15171519.CrossRefGoogle Scholar
Takeuchi, T., Watanabe, T. and Nose, T. 1979a. Requirement of essential fatty acids of chum salmon (Oncorhynchus keta) in fresh water environment. Bulletin of the Japanese Society of Scientific Fisheries 45: 13191323.CrossRefGoogle Scholar
Takeuchi, T., Watanabe, T. and Ogino, C. 1979b. Optimum ratio of dietary energy to protein for carp. Bulletin of the Japanese Society of Scientific Fisheries 45: 983987.CrossRefGoogle Scholar
Thomassen, M. S. and Rosjo, C. 1989. Different fats in feed for salmon: influence on sensory parameters, growth rate and fatty acids in muscle and heart. Aquaculture 79: 129135.CrossRefGoogle Scholar
Watanabe, T. 1982. Lipid nutrition in fish. Comparative Biochemistry and Physiology 77B: 315.Google Scholar
Xu, R., Hung, S. S. O. and German, J. B. 1996. Effects of dietary lipids on the fatty acid composition of triglycérides and phospholipids in tissues of white sturgeon. Aquaculture Nutrition 2: 101109.CrossRefGoogle Scholar
Yu, T. C. and Sinnhuber, R. O. 1979. Effect of dietary n-3 and n-6 fatty acids on growth and feed conversion efficiency of coho salmon (Oncorhynchus kisutch). Aquaculture 16: 3138.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 9 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 20th April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Effects of dietary lipid composition on growth, food utilization and body composition of European eel (Anguilla anguilla)
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Effects of dietary lipid composition on growth, food utilization and body composition of European eel (Anguilla anguilla)
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Effects of dietary lipid composition on growth, food utilization and body composition of European eel (Anguilla anguilla)
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *