Skip to main content Accessibility help

The monster we don't see: subclinical BRD in beef cattle

  • Dee Griffin (a1)


Bovine respiratory disease (BRD) is the most expensive disease affecting United States cattle. Recently weaned calves are the focus of prevention and treatment research. Identifying affected cattle early in the course of BRD is difficult. Intervention during the early stages of BRD improves treatment outcomes; however, cattle as prey animals are excellent at hiding signs of disease, especially if the caregiver has not gained their trust. Depression, appetite loss, and changes in respiratory character are the principal signs used to identify BRD. Rectal temperatures from cattle pulled for treatment are a final measure of evaluation. Cattle suffering from subclinical BRD frequently escape identification and treatment. Observations of lungs at packing plants for anterior ventral (AV) lesions frequently document higher BRD incidence rates than observed pre-harvest, suggesting subclinical BRD is common. Data from numerous studies document lower average daily gains (ADG) from cattle with AV lung lesions at packing plants that were not treated for BRD compared with cattle with normal lungs. Scoring lung lesions at the packing plant can be a useful tool for gaining insight into BRD incidence. Data indicate that BRD lowers ADG by 0.2 lbs on average, and lowers the USDA Quality Grade by 50 marbling points.


Corresponding author

Corresponding author. E-mail: DGriffin@GPVEC.UNL.EDU


Hide All
Anonymous (1982–1985a). Griffin D, BRD treatment record analysis from Hitch Enterprises; Henry C Hitch Feedlot, Hitch I Feeders and Hitch II Feeders. Master Veterinary Service, Guymon, Oklahoma.
Anonymous (1982–1985b). Griffin D, BRD offal observations from packing plants in the Oklahoma panhandle, Southwest Kansas and Texas panhandle of cattle from the same area. Master Veterinary Service, Guymon, Oklahoma.
Anonymous (1993). Griffin D and Perino L. BRD outcome in antibiotic treated versus non-antibiotic treated newly weaned calves. University of Nebraska, Great Plains Veterinary Educational Center. Clay Center, Nebraska.
Bingham, H, Morley, P, Wittum, T, Bray, T, Ellis, J, Queen, W, and Shulaw, W (2000). Effects of 3-methylindole production and immunity against bovine respiratory syncytial virus on development of respiratory tract disease and rate of gain of feedlot cattle. American Journal of Veterinary Research 61: 13091314.
Bryant, LK (1997). Thesis: Lung lesions in feedlot aged beef calves at slaughter: an observational study to develop methodologies for recording lung lesions at slaughter and investigating their associations with production. PhD thesis, P. 1–116. Great Plains Veterinary Educational Center, University of Nebraska – Lincoln, Lincoln, Nebraska.
Busby, D (2014). Factors That Impact Profit in Feeder Cattle – TCSCF Data Summary. Ames, Iowa: Tri-County Steer Carcass Futurity Cooperative and Iowa State University.
Epperson, B (1999). Lifetime effects of respiratory and liver disease on cattle. In Proceedings: The Range Beef Cow Symposium XVI, 14–16 December 1999. Greeley, Colorado.
Galyean, M, Perino, L and Duff, G (1999). Interaction of cattle health/immunity and nutrition. Journal of Animal Science 77: 11201134.
Gardner, B, Dolezal, H, Bryant, K, Owens, F and Smith, R (1999). Health of finishing steers: effects on performance, carcass traits, and meat tenderness. Journal of Animal Science 77: 31683175.
Irsik, M. (2010). BRD and fed cattle performance. In Florida Cattlemen's Association Proceedings.
Leach, R, Chitko-McKown, C, Bennett, G, Jones, S, Kachman, S, Keele, J, Leymaster, K, Thallman, R and Kuehn, L (2013). The change in differing leukocyte populations during vaccination to bovine respiratory disease and their correlations with lung scores, health records, and average daily gain. Journal of Animal Science 91: 35643573.
Loneragan, G, Thomson, D, Montgomery, D, Mason, G and Larson, R (2005). Prevalence, outcome, and health consequences associated with persistent infection with bovine viral diarrhea virus in feedlot cattle. Journal of the American Veterinary Medical Association 226: 595601.
McAllister, CM (2010). Genetics of bovine respiratory disease in feedlot cattle. PhD thesis, P. 1–116. Department of Animal Sciences, Colorado State University Fort Collins, Colorado.
Munson, R, Thomson, D and Reinhardt, C (2012). Effects of delayed steroid implanting on health, performance, and carcass quality in high health risk, auction market-sourced feedlot steers. Journal of Animal Science 90: 40374041.
Reinhardt, C, Busby, W and Corah, L (2009). Relationship of various incoming cattle traits with feedlot performance and carcass traits. Journal of Animal Science 87: 30303042.
Renter, D, White, B, Wagner, B, Dargatz, D, Sanderson, M, Scott, H and Larson, R (2013). Management practices associated with the rate of respiratory tract disease among preweaned beef calves in cow–calf operations in the United States. Journal of the American Veterinary Medical Association 242: 12711278.
Rezac, D, Thomson, D, Bartle, S, Osterstock, J, Prouty, F and Reinhardt, C (2014). Prevalence, severity, and relationships of lung lesions, liver abnormalities, and rumen health scores measured at slaughter in beef cattle. Journal of Animal Science 92: 2595–602.
Schneider, M, Tait, R, Busby, W and Reecy, J (2009). An evaluation of bovine respiratory disease complex in feedlot cattle: impact on performance and carcass traits using treatment records and lung lesion scores. Journal of Animal Science 87: 18211827.
Smith, R (1998). Impact of disease on feedlot performance: a review. Journal of Animal Science 76: 272274.
Taylor, J, Fulton, R, Lehenbauer, T, Step, D and Confer, A (2010). The epidemiology of bovine respiratory disease: what is the evidence for preventive measures? Canadian Veterinary Journal 51: 13511359.
Thompson, P, Stone, A and Schultheiss, W (2006). Use of treatment records and lung lesion scoring to estimate the effect of respiratory disease on growth during early and late finishing periods in South African feedlot cattle. Journal of Animal Science 84: 488498.
Wittum, T, Woollen, N, Perino, L and Littledike, E (1996). Relationship among treatment for respiratory tract disease, pulmonary lesions evident at slaughter, and rate of weight gain in feedlot cattle. Journal of the American Veterinary Medical Association 209: 814818.


The monster we don't see: subclinical BRD in beef cattle

  • Dee Griffin (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed