Skip to main content Accessibility help
×
Home

Efficacy of bacterial vaccines to prevent respiratory disease in swine: a systematic review and network meta-analysis

  • Jan M. Sargeant (a1) (a2), Bhumika Deb (a1) (a2), Michele D. Bergevin (a1) (a2), Katheryn Churchill (a1) (a2), Kaitlyn Dawkins (a1) (a2), Jennifer Dunn (a1) (a2), Dapeng Hu (a3), Carly Moody (a1) (a2), Annette M. O'Connor (a4), Terri L. O'Sullivan (a1), Mark Reist (a1) (a2), Chong Wang (a3) (a4), Barbara Wilhelm (a1) (a2) and Charlotte B. Winder (a1) (a2)...

Abstract

A systematic review and network meta-analysis (MA) was conducted to address the question, ‘What is the efficacy of bacterial vaccines to prevent respiratory disease in swine?’ Four electronic databases and the grey literature were searched to identify clinical trials in healthy swine where at least one intervention arm was a commercially available vaccine for one or more bacterial pathogens associated with respiratory disease in swine, including Mycoplasma hyopneumoniae, Actinobacillus pleuropneumonia, Actinobacillus suis, Bordetella bronchiseptica, Pasteurella multocida, Stretococcus suis, Haemophils parasuis, and Mycoplasma hyorhinis. To be eligible, trials had to measure at least one of the following outcomes: incidence of clinical morbidity, mortality, lung lesions, or total antibiotic use. There were 179 eligible trials identified in 146 publications. Network MA was undertaken for morbidity, mortality, and the presence or absence of non-specific lung lesions. However, there was not a sufficient body of research evaluating the same interventions and outcomes to allow a meaningful synthesis of the comparative efficacy of the vaccines. To build this body of research, additional rigor in trial design and analysis, and detailed reporting of trial methods and results are warranted.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Efficacy of bacterial vaccines to prevent respiratory disease in swine: a systematic review and network meta-analysis
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Efficacy of bacterial vaccines to prevent respiratory disease in swine: a systematic review and network meta-analysis
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Efficacy of bacterial vaccines to prevent respiratory disease in swine: a systematic review and network meta-analysis
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Author for correspondence: Jan M. Sargeant, Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada. E-mail: sargeanj@uoguelph.ca

References

Hide All
American Association of Swine Veterinarians (2019) Basic guidelines of judicious use of therapeutic antimicrobials in pork production. Available at http://www.aasv.org/documents/JUG.php (Accessed 3 January 2019).
Brace, S, Taylor, D and O'Connor, AM (2010) The quality of reporting and publication status of vaccine trials presented at veterinary conferences from 1988 to 2003. Vaccine 28, 53065314.
Burns M, J and O'Connor, AM (2008) Assessment of methodological quality and sources of variation in the magnitude of vaccine efficacy: a systematic review of studies from 1960 to 2005 reporting immunization with Moraxella bovis vaccines in young cattle. Vaccine 26, 144152.
Cipriani, A, Higgins, JPT, Geddes, JR and Salanti, G (2013) Conceptual and technical challenges in network meta-analysis. Annals of Internal Medicine 159, 130137.
Codex Alimentarius Commission (2014) Risk analysis and science in Codex. Available at http://www-pub.iaea.org/iaeameetings/cn222pn/Session6/6-04-IAEA-CN-222-Bruno-FAO.pdf (Accessed 4 January 2019).
Dias, S, Welton, NJ, Caldwell, DM and Ades, AE (2010) Checking consistency in mixed treatment comparison meta-analysis. Statistics in Medicine 29, 555560.
Dias, S, Welton, NJ, Sutton, AJ and Ades, A (2011) NICE DSU technical support document 2: a generalised linear modelling framework for pairwise and network meta-analysis of randomized controlled trials. National Institute for Health and Clinical Excellence, Technical Support Document in Evidence Synthesis; No. TSD2. Available at https://research-information.bristol.ac.uk/en/publications/nice-dsu-technical-support-document-2-a-generalised-linear-modelling-framework-for-pairwise-and-network-metaanalysis-of-randomised-controlled-trials(f941ebe0-73fa-444f-85d1-aa311d7b50f6)/export.html (Accessed 4 January 2019).
Egger, M and Smith, DG (1998) Meta-analysis: bias in location and selection of studies. British Medical Journal 316, 61.
Egger, M, Smith, GD, Schneider, M and Minder, C (1997) Bias in meta-analysis detected by a simple, graphical test. British Medical Journal 315, 629.
European Food Safety Authority (2010) Application of systematic review methodology to food and feed safety assessments to support decision making. European Food Safety Authority Journal 8, 1637. Available at https://efsa.onlinelibrary.wiley.com/doi/epdf/10.2903/j.efsa.2010.1637 (Accessed 4 January 2019).
Higgins, JPT and Green, S (2011) Cochrane Handbook for Systematic Reviews of Interventions. West Sussex, England: John Wiley & Sons, Ltd.
Higgins, JPT, Sterne, JAC, Savović, J, Page, MJ, Hróbjartsson, A, Boutran, I, Reeves, B and Eldridge, S (2016) A revised tool for assessing risk of bias in randomized trials. In Chandler, J, McKenzie, J, Boutron, I and Welch, V (eds), Cochrane Methods. Cochrane Database of Systematic Reviews, vol. 10(suppl. 1), pp. 2831.
Hu, D, Wang, C and O'Connor, AM (2019) A method of back-calculating the log odds ratio and standard error of the log odds ratio from the reported group-level risk of disease. bioRxiv. doi.org/10.1101/760942.
Hutton, B, Salanti, G, Caldwell, DM, Chaimani, A, Schmid, CH, Cameron, C, Ioannidis, JP, Straus, S, Thorlund, K, Jansen, JP, Mulrow, C, Catalá-López, F, Gøtzsche, PC, Dickersin, K, Boutron, I, Altman, DG and Moher, D (2015) The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: checklist and explanations. Annals of Internal Medicine 162, 777784.
Karriker, L, Coeteze, J, Friendship, R and Prescott, J (2012) Drug pharmacology, therapy and prophylaxis. In Zimmerman, J, Karriker, L, Ramirez, A, Schwartz, K and Stevenson, G (eds), Diseases of Swine, 10th Edn.Ames: Wiley and Sons, pp. 106118.
Lu, G and Aedes, AE (2004) The combination of direct and indirect evidence in mixed treatment comparisons. Statistics in Medicine 23, 31053124.
Moher, D, Pham, B, Jones, A, Cook, DJ, Jadad, AR, Moher, M, Tugwell, P and Klassen, TP (1998) Does quality of reports of randomised trials affect estimates of intervention efficacy reported in meta-analyses? Lancet 352, 609613.
Moher, D, Shamseer, L, Clarke, M, Ghersi, D, Liberati, A, Petticrew, M, Shekelle, P and Stewart, LA (2015) Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Systematic Review 4, 1.
Moura, CAA, Totton, SC, Sargeant, JM, O'Sullivan, TL, Linhares, DCL and O'Connor, AM (2019) Evidence of improved reporting of swine intervention trials in the post-REFLECT statement publication period. Journal of Swine Health and Production 27, 265277.
O'Connor, AM, Sargeant, JM, Gardner, I, Dickson, J, Torrence, M, Dewey, CE, Dohoo, I, Evans, R, Gray, J, Greiner, M, Keefe, G, Lefebvre, S, Morley, P, Ramirez, A, Sischo, W, Smith, D, Snedeker, K, Sofos, J, Ward, M and Wills, R (2010 a) The REFLECT statement: methods and processes of creating reporting guidelines for randomized controlled trials for livestock and food safety. Zoonoses and Public Health 57, 95104.
O'Connor, AM, Sargeant, JM, Gardner, I, Dickson, J, Torrence, M, Dewey, CE, Dohoo, I, Evans, R, Gray, J, Greiner, M, Keefe, G, Lefebvre, S, Morley, P, Ramirez, A, Sischo, W, Smith, D, Snedeker, K, Sofos, J, Ward, M and Wills, R (2010 b) The REFLECT statement: methods and processes of creating reporting guidelines for randomized controlled trials for livestock and food safety. Preventative Veterinary Medicine 93, 1118.
O'Connor, AM, Sargeant, JM, Gardner, I, Dickson, J, Torrence, M, Dewey, CE, Dohoo, I, Evans, R, Gray, J, Greiner, M, Keefe, G, Lefebvre, S, Morley, P, Ramirez, A, Sischo, W, Smith, D, Snedeker, K, Sofos, J, Ward, M and Wills, R (2010 c) The REFLECT statement: methods and processes of creating reporting guidelines for randomized controlled trials for livestock and food safety. Journal of Veterinary Internal Medicine 24, 5764.
O'Connor, AM, Sargeant, JM, Gardner, I, Dickson, J, Torrence, M, Dewey, CE, Dohoo, I, Evans, R, Gray, J, Greiner, M, Keefe, G, Lefebvre, S, Morley, P, Ramirez, A, Sischo, W, Smith, D, Snedeker, K, Sofos, J, Ward, M and Wills, R (2010 d) The REFLECT statement: methods and processes of creating reporting guidelines for randomized controlled trials for livestock and food safety. Journal of Food Protection 73, 132139.
O'Connor, AM, Sargeant, JM, Gardner, I, Dickson, J, Torrence, M, Dewey, CE, Dohoo, I, Evans, R, Gray, J, Greiner, M, Keefe, G, Lefebvre, S, Morley, P, Ramirez, A, Sischo, W, Smith, D, Snedeker, K, Sofos, J, Ward, M and Wills, R (2010 e) The REFLECT statement: methods and processes of creating reporting guidelines for randomized controlled trials for livestock and food safety. Journal of Swine Health and Production 18, 1826.
O'Connor, AM, Coetzee, JF, da Silva, N and Wang, C (2013) A mixed treatment comparison meta-analysis of antibiotic treatments for bovine respiratory disease. Preventative Veterinary Medicine 110, 7787.
O'Donnell, CM, Black, N, McCourt, KC, McBrien, ME, Clarke, M, Patterson, CC, Blackwood, B, McAuley, DF and Shields, MO (2019) Development of a core outcome set for studies evaluating the effects of anaesthesia on perioperative morbidity and mortality following hip fracture surgery. British Journal of Anaesthesia 122, 120130.
Opriessnig, T, Giménez-Lirola, LG and Halbur, PG (2011) Polymicrobial respiratory disease in pigs. Animal Health Research Reviews 12, 133148.
Papakonstantinou, T, Nikolakopoulou, A, Rucker, G, Chaimani, A, Schwarzer, G, Egger, M and Salanti, G (2018) Estimating the contribution of studies in network meta-analysis: paths, flows and streams. F1000Research 7, 610.
Plummer, M (2015) RJAGS: Bayesian graphical models using MCMC. R. Package version 3.15. Available at http://CRAN.R-project.org/package=rjags (Accessed 15 April 2019).
R Core Team (2015) R: A language and environment for statistical computing. R Foundation for Statistical Computing. Available at https://www.R-project.org (Accessed 15 April 2019).
Salanti, G, Del Giovane, C, Chaimani, A, Caldwell, DM and Higgins, JPT (2014) Evaluating the quality of evidence from a network meta-analysis. PLoS ONE 9, 7.
Sargeant, JM, Elgie, R, Valcour, J, Saint-Onge, J, Thompson, A, Marcynuk, P and Snedeker, K (2009 a) Methodological quality and completeness of reporting in clinical trials conducted in livestock species. Preventative Veterinary Medicine 91, 107115.
Sargeant, JM, Saint-Onge, J, Valcour, J, Thompson, A, Elgie, R, Snedeker, K and Marcynuk, P (2009 b) Quality of reporting in clinical trials of pre-harvest food safety interventions and associations with treatment effect. Foodborne Pathogens and Disease 6, 989999.
Sargeant, JM, O'Connor, AM, Gardner, IA, Dickson, JS, Torrence, ME and Consensus Meeting Participants: Dohoo, IR, Lefebvre, SL, Morley, PS, Ramirez, A and Snedeker, K (2010 a) The REFLECT Statement: reporting guidelines for randomized controlled trials in livestock and food safety: explanation and elaboration. Journal of Food Protection 73, 579603.
Sargeant, JM, O'Connor, AM, Gardner, IA, Dickson, JS, Torrence, ME and Consensus Meeting Participants: IR Dohoo, SL Lefebvre, PS Morley, A Ramirez, and K Snedeker (2010 b) The REFLECT Statement: reporting guidelines for randomized controlled trials in livestock and food safety: explanation and elaboration. Zoonoses and Public Health 57, 105136.
Sargeant, JM, Kelton, DF and O'Connor, AM (2014 a) Study designs and systematic review of interventions: building evidence across study designs. Zoonoses and Public Health 61, 1017.
Sargeant, JM, Kelton, DF and O'Connor, AM (2014 b) Randomized controlled trials and challenge trials: design and criterion for validity. Zoonoses and Public Health 61, 1827.
Schukken, YH, Grohn, YT, McDermott, B and McDermott, JJ (2003) Analysis of correlated discrete observations: background, examples and solutions. Preventative Veterinary Medicine 59, 223240.
Sterne, JAC, Gavaghan, D and Egger, M (2000) Publication and related bias in meta-analysis: power of statistical tests and prevalence in the literature. Journal of Clinical Epidemiology 53, 11191129.
United States Department of Agriculture (USDA) (2016 a) Swine 2012 Part I: baseline reference of swine health and management in the United States, 2012. Available at https://www.aphis.usda.gov/animal_health/nahms/swine/downloads/swine2012/Swine2012_dr_PartI.pdf (Accessed 2 January 2019).
United States Department of Agriculture (USDA) (2016 b) Swine 2012 Part II: reference of swine health and health management in the United States, 2012. Available at https://www.aphis.usda.gov/animal_health/nahms/swine/downloads/swine2012/Swine2012_dr_PartII.pdf (Accessed 2 January 2019).
VanAlstine, W (2012) Respiratory system. In Zimmerman, J, Karriker, L, Ramirez, A, Schwartz, K and Stevenson, G (eds), Diseases of Swine, 10th Edn.Ames: Wiley and Sons, pp. 348362.
Viechtbauer, W (2010) Conducting meta-analyses in R with the metafor package, Journal of Statistical Software 36, 148.
Wellman, NG and O'Connor, AM (2007) Meta-analysis of treatment of cattle with bovine respiratory disease with tulathromycin. Journal of Veterinary Pharmacology and Therapeutics 30, 234241.
White, IR, Barrett, JK, Jackson, D and Higgins, JPT (2012) Consistency and inconsistency in network meta-analysis: model estimation using multiple meta-regression. Research Synthesis Methods 3, 111125.
Williamson, PR, Altman, DG, Bagley, H, Barnes, KL, Blazeby, JM, Brookes, ST, Clarke, M, Gargon, E, Gorst, S, Harman, N, Kirkham, JJ, McNair, A, Prinsen, CAC, Schmitt, J, Terwee, CB and Young, B (2017) The COMET Handbook: version 1.0. Trials 18(suppl. 3), 280.
Winder, CB, Churchill, KJ, Sargeant, JM, LeBlanc, SJ, O'Connor, AM and Renaud, DL (2019) REFLECTing on a year of animal trials in the Journal of Dairy Science. Journal of Dairy Science 102, 47594771.
Wisener, LV, Sargeant, JM, O'Connor, AM, Faires, MC and Glass-Kaastra, SK (2014) The evidentiary value of challenge trials for three pre-harvest food safety topics: a systematic assessment. Zoonoses and Public Health 61, 449476.
World Health Organization (2015) Global action plan on antimicrobial resistance. Available at http://apps.who.int/iris/bitstream/handle/10665/193736/9789241509763_eng.pdf?sequence=1 (Accessed 3 January 2019).
World Health Organization (2018) Systematic review centres. Available at https://www.who.int/alliance-hpsr/projects/systematic_reviews/en/ (Accessed 3 January 2019).
Wuytack, F, Gutke, A, Stuge, B, Mørkved, S, Olsson, C, Robinson, HS, Vøllestad, NK, Öberg, B, Wikmar, LN, Mena, JJS and Smith, V (2018) Protocol for the development of a core outcome set for pelvic girdle pain, including methods for measuring the outcomes: the PGP-COS study. BMC Medical Research Methodology 18, 158.

Keywords

Type Description Title
WORD
Supplementary materials

Sargeant et al. supplementary material
Sargeant et al. supplementary material 1

 Word (4.1 MB)
4.1 MB
WORD
Supplementary materials

Sargeant et al. supplementary material
Sargeant et al. supplementary material 2

 Word (57 KB)
57 KB

Efficacy of bacterial vaccines to prevent respiratory disease in swine: a systematic review and network meta-analysis

  • Jan M. Sargeant (a1) (a2), Bhumika Deb (a1) (a2), Michele D. Bergevin (a1) (a2), Katheryn Churchill (a1) (a2), Kaitlyn Dawkins (a1) (a2), Jennifer Dunn (a1) (a2), Dapeng Hu (a3), Carly Moody (a1) (a2), Annette M. O'Connor (a4), Terri L. O'Sullivan (a1), Mark Reist (a1) (a2), Chong Wang (a3) (a4), Barbara Wilhelm (a1) (a2) and Charlotte B. Winder (a1) (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed