Skip to main content Accessibility help
×
Home

Comparative efficacy of blanket versus selective dry-cow therapy: a systematic review and pairwise meta-analysis

  • C. B. Winder (a1), J. M. Sargeant (a1) (a2), D. F. Kelton (a1), S. J. Leblanc (a1), T. F. Duffield (a1), J. Glanville (a3), H. Wood (a3), K. J. Churchill (a2), J. Dunn (a2), M. d. Bergevin (a2), K. Dawkins (a2), S. Meadows (a2) and A. M. O'Connor (a4)...

Abstract

A systematic review and meta-analysis were conducted to determine the efficacy of selective dry-cow antimicrobial therapy compared to blanket therapy (all quarters/all cows). Controlled trials were eligible if any of the following were assessed: incidence of clinical mastitis during the first 30 DIM, frequency of intramammary infection (IMI) at calving, or frequency of IMI during the first 30 DIM. From 3480 identified records, nine trials were data extracted for IMI at calving. There was an insufficient number of trials to conduct meta-analysis for the other outcomes. Risk of IMI at calving in selectively treated cows was higher than blanket therapy (RR = 1.34, 95% CI = 1.13, 1.16), but substantial heterogeneity was present (I2 = 58%). Subgroup analysis showed that, for trials using internal teat sealants, there was no difference in IMI risk at calving between groups, and no heterogeneity was present. For trials not using internal teat sealants, there was an increased risk in cows assigned to a selective dry-cow therapy protocol, compared to blanket treatment, with substantial heterogeneity in this subgroup. However, the small number of trials and heterogeneity in the subgroup without internal teat sealants suggests that the relative risk between treatments may differ from the determined point estimates based on other unmeasured factors.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Comparative efficacy of blanket versus selective dry-cow therapy: a systematic review and pairwise meta-analysis
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Comparative efficacy of blanket versus selective dry-cow therapy: a systematic review and pairwise meta-analysis
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Comparative efficacy of blanket versus selective dry-cow therapy: a systematic review and pairwise meta-analysis
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Author for correspondence: C. B. Winder, Department of Population Medicine, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada. E-mail: winderc@uoguelph.ca

References

Hide All
Browning, JW, Mein, GA, Barton, M, Nicholls, TJ and Brightling, P (1990) Effects of antibiotic therapy at drying off on mastitis in the dry period and early lactation. Australian Veterinary Jouranl 67, 440442.
Cameron, M, McKenna, SL, MacDonald, KA, Dohoo, IR, Roy, JP and Keefe, GP (2014) Evaluation of selective dry cow treatment following on-farm clinical culture: risk of postcalving intramammary infection and clinical mastitis in the subsequent lactation. Journal of Dairy Science 97, 270284.
ECDC/EMEA Joint Technical Report (2015) The bacterial challenge: time to react. Available at ec.europa.eu/health/antimicrobial_resistance/.../2015_prudent_use_guidelines_en.pdf (Accessed 18 April 2019).
Enger, BD, White, RR, Nickerson, SC and Fox, LK (2016) Identification of factors influencing teat dip efficacy trial results by meta-analysis. Journal of Dairy Science 99, 99009911.
Green, MJ, Green, LE, Medley, GF, Schukken, YH and Bradley, AJ (2002) Influence of dry period bacterial intramammary infection on clinical mastitis in dairy cows. Journal of Dairy Science 85, 25892599.
Halasa, T, Osteras, O, Hogeveen, H, van Werven, T and Nielen, M (2009) Meta-analysis of dry cow management for dairy cattle. Part 1. Protection against new intramammary infections. Journal of Dairy Science 92, 31343149.
Hassan, Z, Daniel, RCW, O'Boyle, D and Frost, AJ (1999) Effects of dry cow intramammary therapy on quarter infections in the dry period. The Veterinary Record 145, 634639.
Higgins, JPT, Thomas, J, Chandler, J, Cumpston, M, Li, T, Page, MJ and Welch, VA (eds) (2011) Cochrane Handbook for Systematic Reviews of Interventions Version 6.0 (updated July 2019). Cochrane, 2019. Available from www.training.cochrane.org/handbook.
Higgins, JPT, Sterne, JA, Savovic, J, Page, MJ, Hróbjartsson, A and Boutron, I (2016) A revised tool for assessing risk of bias in randomized trials. Cochrane Database of Systemaic Reviews 10(suppl. 1), 2931.
Knapp, G and Hartung, J (2003) Improved tests for a random effects meta-regression with a single covariate. Statistics in Medicine 22, 26932710.
Lam, TJGM, van Engelen, E, Scherpenzeel, CGM and Hage, JJ (2012) Strategies to reduce antibiotic usage in dairy cattle in the Netherlands. Cattle Practice 20, 163171.
Lam, TJGM, Van Den Borne, BHP, Jansen, J, Huijps, K, Van Veersen, KCL, van Schaik, G and Hogeveen, H (2013) Improving bovine udder health: a national control program in the Netherlands. Journal of Dairy Science 96, 13011311.
Liberati, A, Altman, DG, Tetzlaff, J, Mulrow, C, Gøtzsche, PC, Ioannidis, JPA, Clarke, M, Devereaux, PJ, Kleijnen, J and Moher, D (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. Journal of Clinical Epidemiology 62, e1e34.
Moher, D, Shamseer, L, Clarke, M, Ghersi, D, Liberati, A, Petticrew, M, Shekelle, P, Stewart, LA and PRISMA-P Group. (2015) Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Systematic Reviews 4, 1.
Moura, CAA, Totton, SC, Sargeant, JM, O'Sullivan, TL, Linhares, DCL and O'Connor, AM (2019) Evidence of improved reporting of swine intervention trials in the post-REFLECT statement publication period. Journal of Swine Health and Production 27, 265277.
Neave, FK, Dodd, FH, Kingwill, RG and Westgarth, DR (1969) Control of mastitis in the dairy herd by hygiene and management. Journal of Dairy Science 52, 696707.
O'Connor, AM, Sargeant, JM, Gardner, IA, Dickson, JS, Torrence, ME, Dewey, CE, Dohoo, I, Evans, R, Gray, J, Greiner, M, Keefe, G, Lefebvre, S, Morley, P, Ramirez, A, Sischo, W, Smith, D, Snedeker, K, Sofos, J, Ward, M and Wills, R (2010) The REFLECT statement: methods and processes of creating reporting guidelines for randomized controlled trials for livestock and food safety. Journal of Veterinary Internal Medicine 24, 5764.
O'Connor, AM, Anderson, KM, Goodell, CK and Sargeant, JM (2014a) Conducting systematic reviews of intervention questions I: writing the review protocol, formulating the question and searching the literature. Zoonoses and Public Health 61(suppl. 1), 2838.
O'Connor, AM, Sargeant, JM and Wang, C (2014b) Conducting systematic reviews of intervention questions III: synthesizing data from intervention studies using meta-analysis. Zoonoses and Public Health 61(suppl. 1), 5263.
Patel, K, Godden, SM, Royster, EE, Timmerman, JA, Crooker, BA and McDonald, N (2017) Pilot study: impact of using a culture-guided selective dry cow therapy program targeting quarter-level treatment on udder health and antibiotic use. The Bovine Practitioner 5, 4857.
Pereira, UP, Oliveira, DG, Mesquita, LR, Costa, GM and Pereira, LJ (2011) Efficacy of staphylococcus aureus vaccines for bovine mastitis: a systematic review. Veterinary Microbiology 148, 117124.
Piepers, S, De Vliegher, S, de Kruif, A, Opsomer, G and Barkema, HW (2009) Impact of intramammary infections in dairy heifers on future udder health, milk production, and culling. Veterinary Microbiology 134, 113120.
Rindsig, RB, Rodewald, RG, Smith, AR and Spahr, SL (1978) Complete versus selective dry cow therapy for mastitis control. Journal of Dairy Science 61, 14831497.
Robert, A, Seegers, H and Bareille, N (2006) Incidence of intramammary infections during the dry period without or with antibiotic treatment in dairy cows – a quantitative analysis of published data. Veterinary Research 37, 2548.
Robinson, TC, Jackson, ER and Marr, A (1983) Within herd comparison of teat dipping and dry cow therapy with only selective dry cow therapy in six herds. Veterinary Record 112, 315319.
Ruegg, PL (2017) A 100-year review: mastitis detection, management, and prevention. Journal of Dairy Science 100, 1038110397.
Santman-Berends, IMGA, Swinkels, JM, Lam, TJGM, Keurentjes, J and van Schaik, G (2016) Evaluation of udder health parameters and risk factors for clinical mastitis in Dutch dairy herds in the context of a restricted antimicrobial usage policy. Journal of Dairy Science 99, 29302939.
Sargeant, JM and O'Connor, AM (2014a) Introduction to systematic reviews in animal agriculture and veterinary medicine. Zoonoses and Public Health 61(suppl. 1), 39.
Sargeant, JM and O'Connor, AM (2014b) Conducting systematic reviews of intervention questions II: relevance screening, data extraction, assessing risk of bias, presenting the results and interpreting the findings. Zoonoses and Public Health 61(suppl. 1), 3951.
Sargeant, JM, O'Connor, AM, Gardner, IA, Dickson, JS, Torrence, ME and Consensus Meeting Participants (2010) The REFLECT statement: reporting guidelines for randomized controlled trials in livestock and food safety: explanation and elaboration. Zoonoses and Public Health 57, 105136.
Sargeant, JM, Kelton, DF and O'Connor, AM (2014a) Study designs and systematic reviews of interventions: building evidence across study designs. Zoonoses and Public Health 61(suppl. 1), 1017.
Sargeant, JM, Kelton, DF and O'Connor, AM (2014b) Randomized controlled trials and challenge trials: design and criterion for validity. Zoonoses and Public Health 61(suppl. 1), 1827.
Seeth, MT, Wente, N, Paduch, JH, Klocke, D, Mansion-de Vries, E, Hoedemaker, M and Kromker, V (2017) Different selective dry cow therapy concepts compared to blanket antibiotic dry cow treatment. Tierarztliche Praxis Grobtiere 6, 343349.
Serieys, F and Roguinsky, F (1975) Comparative tests with dry cow therapy for some or all cows in a herd. Annual bulletin – International Dairy Federation 85, 349351.
United States Department of Agriculture (2008) Antibiotic use on U.S. dairy operations, 2002 and 2007 Riverdale: United States department of agriculture, animal and plant health inspection service. Available at https://www.aphis.usda.gov/animal_health/nahms/dairy/downloads/dairy07/Dairy07_is_AntibioticUse.pdf (Accessed 18 April 2019).
USDA-APHIS (2016) Dairy 2014: Milk quality, milking procedures, and mastitis in the United States. Available at https://www.aphis.usda.gov/animal_health/nahms/dairy/downloads/dairy14/Dairy14_dr_Mastitis.pdf (Accessed 18 April 2019).
van Knegsel, AT, van der Drift, SG, Cermakova, J and Kemp, B (2013) Effects of shortening the dry period of dairy cows on milk production, energy balance, health, and fertility: a systematic review. The Veterinary Journal 198, 707713.
Vanhoudt, A, van Hees-Heijps, K, van Knegsel, ATM, Sampimon, OC, Vernooij, JCM, Nielen, M and van Werven, T (2018) Effects of reduced intramammary antimicrobial use during the dry period on udder health in Dutch dairy herds. Journal of Dairy Science 101, 32483260.
Viechtbauer, W (2010) Conducting meta-analyses in R with the metafor package. Journal of Statistical Software 36, 148.
Vilar, MJ, Hovinen, M, Simojoki, H and Rajala-Schultz, PJ (2018) Drying-off practices and use of dry cow therapy in Finnish dairy herds. Journal of Dairy Science 101, 74877493.
Williamson, JH, Woolford, MW and Day, AM (1995) The prophylactic effect of a dry-cow antibiotic against Streptococcus uberis. New Zealand Veterinary Journal 43, 228234.
World Health Organisation (2015) Global Action Plan on Antimicrobial Resistance. Geneva: World Health Organization. Available at http://www.who.int/iris/bitstream/10665/193736/1/9789241509763_eng.pdf?ua= (Accessed 18 April 2019).

Keywords

Related content

Powered by UNSILO
Type Description Title
PDF
Supplementary materials

Winder et al. supplementary material
Winder et al. supplementary material 1

 PDF (65 KB)
65 KB
PDF
Supplementary materials

Winder et al. supplementary material
Winder et al. supplementary material 2

 PDF (148 KB)
148 KB
PDF
Supplementary materials

Winder et al. supplementary material
Winder et al. supplementary material 3

 PDF (146 KB)
146 KB

Comparative efficacy of blanket versus selective dry-cow therapy: a systematic review and pairwise meta-analysis

  • C. B. Winder (a1), J. M. Sargeant (a1) (a2), D. F. Kelton (a1), S. J. Leblanc (a1), T. F. Duffield (a1), J. Glanville (a3), H. Wood (a3), K. J. Churchill (a2), J. Dunn (a2), M. d. Bergevin (a2), K. Dawkins (a2), S. Meadows (a2) and A. M. O'Connor (a4)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.