Skip to main content Accessibility help
×
Home

Antimicrobial resistance: from basic science to translational innovation

  • Jun Lin (a1)

Abstract

The rise in antimicrobial resistance (AMR) poses a major threat to animal agriculture and human health. To summarize and update current and emerging AMR issues that are significant for animal health and food safety, this issue presents a virtual AMR symposium consisting of seven review papers. These reviews cover a newly described AMR mechanism in Campylobacter, effects of AMR and microbiome on Campylobacter infection, plasmid-mediated colistin resistance in food-producing animals, the impact of point source or antibiotic residues on the environmental resistome, and potential factors influencing horizontal gene transfer in the intestines of food animals. These papers also identify significant knowledge gaps in AMR research and provide new directions for the development of innovative and effective strategies to mitigate AMR in the animal production system.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Antimicrobial resistance: from basic science to translational innovation
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Antimicrobial resistance: from basic science to translational innovation
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Antimicrobial resistance: from basic science to translational innovation
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author. E-mail: jlin6@utk.edu

References

Hide All
Brooks, PT and Mansfield, LS (2018). Effects of antibiotic resistance and microbiome shift on Campylobacter jejuni-mediated diseases. Animal Health Research Reviews doi:10.1017/S1466252318000014, 113.
Bueno, I, Williams-Nguyen, J, Hwang, H, Sargeant, JM, Nault, AJ and Singer, RS (2017). Impact of point sources on antibiotic resistance genes in the natural environment: a systematic review of the evidence. Animal Health Research Reviews doi:10.1017/S146625231700007X, 116.
Sun, J, Zeng, X, Li, XP, Laio, XP, Liu, YH and Lin, J (2018). Plasmid-mediated colistin resistance in animals: current status and future directions. Animal Health Research Reviews doi:10.1017/S1466252317000111, 117.
Tamang, MD and Sunwoo, H, and Jeon, B (2017). Phage-mediated dissemination of virulence factors in pathogenic bacteria facilitated by antibiotic growth promoters in animals: a perspective. Animal Health Research Reviews doi:10.1017/S1466252317000147, 17.
Tang, Y, Fang, L, Xu, C and Zhang, Q (2017). Antibiotic resistance trends and mechanisms in foodborne pathogen Campylobacter. Animal Health Research Reviews doi:10.1017/S1466252317000135, 112.
Yamasaki, S, Le, TD, Vien, MQ, Dang, CV and Yamamoto, Y (2018). Prevalence of extended-spectrum β-lactamase-producing Escherichia coli and residual antimicrobials in the environment in Vietnam. Animal Health Research Reviews doi:10.1017/S1466252317000160, 18.
Zeng, X and Lin, J (2018). The factors influencing horizontal gene transfer in the intestine. Animal Health Research Reviews doi:10.1017/S1466252317000159, 17.

Keywords

Antimicrobial resistance: from basic science to translational innovation

  • Jun Lin (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed