Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-17T21:29:25.424Z Has data issue: false hasContentIssue false

The Majorero camel (Camelus dromedarius) breed

Published online by Cambridge University Press:  01 August 2011

U. Schulz
Affiliation:
Granja Ramblin, Camino del Aleman, 5, 04250 Pechina, Almeria, Spain
Y. Mínguez
Affiliation:
Laboratorio de Genética, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain
M.L. Checa
Affiliation:
Laboratorio de Genética, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain
P. García-Atance
Affiliation:
Laboratorio de Genética, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain
S. Dunner
Affiliation:
Laboratorio de Genética, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain
D. García
Affiliation:
Laboratorio de Genética, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain
J. Cañón
Affiliation:
Laboratorio de Genética, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain
Get access

Summary

A brief historical, morphologic and behavioural review of the camel Fuerteventura breed (Majorero) is presented. Genetic variability within the breed was analysed (n = 10) using 11 microsatellite markers, neutral to the selection, and compared with an African camel population (n = 37). In spite of the fact that there are significantly fewer Majorero camels than African, the level of inbreeding, measured by means of the statistic FIS, is almost 3 times higher in the African camel, (3.2 versus 8.7). The set of markers used shows significant differences between the two populations, (FST = 3.1%) and provides sufficient discrimination (> 99%) to carry out a proper control of parentage in the studbook. Nevertheless, the molecular information available does not manage to assign the individuals into clusters corresponding to its population.

Resumen

Se presenta una revisión breve de la historia, morfología y comportamiento de la raza de camello de Fuerteventura (Majorero). La variabilidad genética dentro de la raza fue analizada (n=10) utilizando 11 marcadores de microsatélites, neutros en la selección, y comparando con la población africana de camellos (n=37). A pesar del hecho que existan de forma significativa menos ejemplares de camellos Majorero en comparación con los africanos, el nivel de consanguinidad, medido utilizando el sistema de estadística FIS, es por lo menos, 3 veces mayor en el camello africano (3,2 frente a 8,7). El grupo de marcadores utilizado muestra diferencias significativas entre las dos poblaciones (FST = 3,1%) y provee suficiente discriminación (> 99%) para llevar a cabo un control de parentesco en el libro genealógico. En todo caso, la información molecular disponible no basta para colocar cada individuo dentro los clusters correspondientes a su población.

Type
Research Articles
Copyright
Copyright © Food and Agriculture Organization of the United Nations 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

List of References

Belkhir, KBorsa, P.. Goudet, J.. Chikhi, L. & Bonhomme, F.. 1998. GENETIX, logiciel sous WindowsTM pour la génétique des populations. Laboratoire Génome et Populations, CNRS UPR 9060, Université de Montpellier II, Montpellier, France.Google Scholar
Cañon, J., Checa, M.L.. Carleos, C.Vega-Pla, J.L.. Vallejo, M. & Dunner, S.. 2000. The genetic structure of Spanish Celtic horse breeds inferred from microsatellite data. Animal Genetics, 31: 3948.CrossRefGoogle ScholarPubMed
Cañon, J., Alexandrino, PBessa, I., Carleos, Y.Carretero, S.Dunner, N.Ferran, D.Garcia, J.Jordana, D.Laloë, A. Pereira, Sanchez, A. & Moazami-Goudarzi, K.. 2001. Genetic diversity measures of local European beef cattle breeds for conservation purposes. Genetics Selection and Evolution, 33: 311332.CrossRefGoogle ScholarPubMed
García, D., Checa, M.L.. García-Atance, P.. Dunner, S. & Cañon, J.. 2000. Medidas de diversidad genética en poblaciones de caballos celtas españoles. ITEA, 96: 282289.Google Scholar
Garcia, D. & Cañon, J.. 2001. Aplicaciones de la diversidad marginal y elasticidad de la diversidad de Weitzman. ITEA, 22: 167169.Google Scholar
Goudet, J. 1995. FSTAT, version 1.2, a computer program to calculate F-statistics. Journal of Heredity, 86: 485486.CrossRefGoogle Scholar
Malécot, G. 1948. Les mathématiques de l'hérédité. Masson et Cie, Paris.Google Scholar
Mburu, D.N., Ochieng, J.W.Kuria, S.G.. Jianlin, H.Kaufmann, B.Rege, J.E.O. & Hanotte, O.. 2003. Genetic diversity and relationships of indigenous Kenyan camel (Camelus dromedarius) populations: implications for their classification. Animal Genetics, 34 : 2632.CrossRefGoogle ScholarPubMed
Minch, E., Ruiz-Linares, A.Goldstein, D.B.Feldman, M.W. & Cavalli-Sforza, L.L. 1995. MICROSAT (version 1.4): a computer program for calculating various statistics on microsatellite allele data: http://lotka.stanford.edu:microsat.html.Google Scholar
Obreque, V., Coogle, L.Henney, P.J.. Bailey, E.. Mancilla, R. García-Huidobro, J.Hinrichsen, P. & Cothran, E.G.. 1998. Characterization of 10 polymorphic alpaca dinuclotide microsatellites. Animal Genetics, 29: 461462.Google Scholar
Obreque, V., Mancilla, R.. García-Huidobro, J. & Hinrichsen, P.. 1999. Thirteen new dinucleotide microsatellites in Alpaca. Animal Genetics, 30: 397398.CrossRefGoogle ScholarPubMed
Penedo, M.C.T., Caetano, A.R. & Cordova, K.I.. 1998. Microsatellite markers for South American camelids. Animal Genetics, 29: 411412.Google ScholarPubMed
Penedo, M.C.T, Caetano, A.R. & Cordova, K.. 1999. Eight microsatellite markers for South American camelids. Animal Genetics, 30: 166167.CrossRefGoogle ScholarPubMed
Penedo, M.C.T, Caetano, A.R. & Cordova, K.. 1999. Six microsatellite markers for South American camelids. Animal Genetics, 30: 399.CrossRefGoogle ScholarPubMed
Lang, K.D.M, Wang, Y.. & Plante, Y.. 1996. Fitteen polymorphic dinucleotide microsatellites in llamas and alpacas. Animal Genetics, 27: 293.CrossRefGoogle Scholar
Weitzman, M. 1992. On diversity. Quarterly Journal of Economy, 107: 363405.CrossRefGoogle Scholar
Weitzman, M. 1993. What to preserve? An application of diversity theory to crane conservation, Quarterly Journal of Economy, 108: 157183.CrossRefGoogle Scholar
Wright, S. 1965. The interpretation of population structure by F-statistics with special regard to systems of mating, Evolution, 19: 395420.CrossRefGoogle Scholar