Skip to main content Accessibility help
×
Home

Genetic diversity of different indigenous chicken ecotypes using highly polymorphic MHC-linked and non-MHC microsatellite markers

  • K. Ngeno (a1) (a2), E.H. van der Waaij (a2), H.J. Megens (a2), A.K. Kahi (a1), J.A.M. van Arendonk (a2) and R.P.M.A. Crooijmans (a2)...

Summary

The study investigated the genetic make-up of different ecotypes of indigenous chickens (ICs) in Kenya based on major histocompatibility complex (MHC)-linked and non-MHC microsatellite markers. Blood samples were collected from eight regions (48 birds per region) of Kenya: Kakamega (KK), Siaya (BN), West Pokot (WP), Turkana (TK), Bomet (BM), Narok (NR), Lamu (LM) and Taita-Taveta (TT) and genotyped using two MHC-linked and ten non-MHC markers. All MHC-linked and non-MHC markers were polymorphic with a total of 140 alleles, of which 56 were identified in MHC-linked markers. Mean number of alleles (Na and Ne), private alleles, heterozygosity and genetic distances were higher for MHC-linked markers compared with non-MHC markers. The ad hoc statistic ΔK detected the true numbers of clusters to be three for MHC-linked markers and two in non-MHC markers. In conclusion, Kenyan ICs belong into two to three genetically distinct groups. Different markers systems have different clustering system. MHC-linked markers divided ICs into three mixed clusters, composing of individuals from the different ecotypes whereas non-MHC markers grouped ICs into two groups. These IC ecotypes host many and highly diverse MHC-linked alleles. Higher allelic diversity indicated a huge amount of genetic variation in the MHC region of ICs and supported their reputation of being hardy and resistant to diseases.

Cette étude a cherché à connaître la configuration génétique de différents écotypes de poules autochtones du Kenya, sur la base de marqueurs microsatellites associés ou non au Complexe Majeur d'Histocompatibilité (CMH). Des échantillons sanguins ont été prélevés dans huit régions du Kenya (48 volailles par région): Kakamega (KK), Siaya (BN), Pokot Occidental (PO), Turkana (TK), Bomet (BM), Narok (NR), Lamu (LM) et Taita-Taveta (TT). Les échantillons ont été génotypés en utilisant deux marqueurs associés au CMH et 10 marqueurs non associés. Tous les marqueurs, aussi bien ceux associés au CMH que ceux non associés à celui-ci, ont été polymorphes avec un total de 140 allèles, dont 56 ont été identifiés avec des marqueurs associés au CMH. Le nombre moyen d'allèles (Na et Ne) et celui d'allèles privés, l'hétérozygotie et les distances génétiques ont été plus élevés pour les marqueurs associés au CMH que pour ceux non associés. La mesure statistique ad hoc ΔK a révélé que le vrai nombre de groupes est de trois pour les marqueurs associés au CMH et de deux pour les marqueurs non associés. En conclusion, les poules autochtones kényanes appartiennent à 2–3 groupes génétiques différents. Des systèmes différents de marqueurs présentent des méthodes différentes de groupement. Les marqueurs associés au CMH ont divisé les populations de poules autochtones en trois groupes mixtes, constitués d'individus provenant des différents écotypes, alors que les marqueurs non associés au CMH ont rassemblé les poules autochtones en deux groupes. Ces écotypes de poules autochtones abritent de nombreux et très divers allèles associés au CMH. Une plus grande diversité allélique est le reflet d'une grande quantité de variation génétique dans la région du CMH des poules autochtones, ce qui confirme leur renommée de volailles rustiques et résistantes aux maladies.

Este estudio investigó la configuración genética de diferentes ecotipos de gallinas autóctonas de Kenia, basándose en marcadores microsatélites asociados y no asociados al Complejo Mayor de Histocompatibilidad (CMH). Se tomaron muestras de sangre en ocho regiones de Kenia (48 aves por región): Kakamega (KK), Siaya (BN), Pokot Occidental (PO), Turkana (TK), Bomet (BM), Narok (NR), Lamu (LM) y Taita-Taveta (TT). Las muestras sanguíneas fueron genotipadas usando dos marcadores asociados al CMH y 10 marcadores no asociados. Todos los marcadores, tanto asociados como no asociados al CMH, fueron polimórficos con un total de 140 alelos, de los cuales 56 fueron identificados en marcadores asociados al CMH. El número medio de alelos (Na y Ne) y de alelos privados, la heterocigosis y las distancias genéticas fueron mayores para los marcadores asociados al CMH que para los marcadores no asociados. El estadístico ad hoc ΔK detectó que el número real de conglomerados era de tres para los marcadores asociados al CMH y de dos para los marcadores no asociados. En conclusión, las gallinas autóctonas keniatas pertenecen a 2–3 grupos genéticos distintos. Sistemas de marcadores distintos presentan diferentes modos de agrupación. Los marcadores asociados al CMH dividieron las poblaciones de gallinas autóctonas en tres conglomerados mixtos, formados por individuos de los diferentes ecotipos, mientras que los marcadores no asociados al CMH agruparon las gallinas autóctonas en dos grupos. Estos ecotipos de gallinas autóctonas albergan muchos y muy diversos alelos asociados al CMH. Una mayor diversidad alélica fue reflejo de una gran cantidad de variación genética en la región del CMH de las gallinas autóctonas, lo cual confirma la fama de estas aves de ser rústicas y resistentes a enfermedades.

Copyright

Corresponding author

Correspondence to: K. Ngeno, Animal Breeding and Genomics Centre, Wageningen University, Wageningen, The Netherlands. email: aarapngeno@gmail.com

References

Hide All
Cavalli-Sforza, L.L. & Edwards, A.W.F. 1967. Phylogenetic analysis: models and estimation procedures. Evolution, 21: 550570.
Chang, C.S., Chen, C.F., Berthouly-Salazar, C., Chazara, O., Lee, Y.P., Chang, C.M., Chang, K.H., Bed'hom, B. & Tixier-Boichard, M. 2012. A global analysis of molecular markers and phenotypic traits in local chicken breeds in Taiwan. Animal Genet., 43: 172182.
Chazara, O., Chang, C., Bruneau, N., Benabdeljelil, K., Fotsa, J.C., Kayang, B.B., Loukou, N.E., Osei-Amponsah, R., Yapi-Gnaore, V., Youssao, I.A.K., Chen, C.F., Laan, M.P., Tixier-Boichard, M. & Bed'Hom, B. 2013. Diversity and evolution of the highly polymorphic tandem repeat LEI0258 in the chicken MHC-B region. Immunogenetics, 65: 447459.
Dana, N. 2011. Breeding programs for indigenous chicken in Ethiopia analysis of diversity in production systems and chicken populations. Wageningen University, The Netherlands (PhD thesis).
Earl, D.A. & Vonholdt, B.M. 2011. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Res., 4: 359361.
Evanno, G., Regnaut, S. & Goudet, J. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol., 14: 26112620.
Excoffier, L. & Lischer, H.E.L. 2011. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Res. 10: 564567 (available at http://cmpg.unibe.ch/software/arlequin3)
Eyto, E.D., McGinnity, P., Consuegra, S., Coughlan, J., Tufto, J., Farrell, K., Megens, H., Jordan, W., Cross, T. & Stet, R.J.M. 2007. Natural selection acts on Atlantic salmon major histocompatibility (MH) variability in the wild. Proc. R. Soc. Biol. Sci., 274: 861869.
FAO. 2007. The structure and importance of the commercial and village based poultry systems in Kenya. Rome, Italy, 92 pp.
FAO. 2011. Molecular genetic characterization of animal genetic resources. FAO Animal Production and Health Guidelines, No. 9. Rome, Italy (available at http://www.fao.org/docrep/014/i2413e/i2413e00.htm).
Fulton, J.E., Juul-Madsen, H.R., Ashwell, C.M., McCarron, A.M., Arthur, J.A., O'Sullivan, N.P. & Taylor, R.L. Jr 2006. Molecular genotype identification of the Gallus gallus major histocompatibility complex. Immunogenetics, 58: 407421.
Goudet, J. 2002. FSTAT version 2.9.3.2. Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.
Hedrick, P.W., Lee, R.N. & Garrigan, D. 2002. Major histocompatibility complex variation in red wolves: evidence for common ancestry with coyotes and balancing selection. Mol. Ecol., 11: 19051913.
Hughes, A.L. & Nei, M. 1989. Nucleotide substitution at major histocompatibility complex class II loci: evidence for over dominant selection. Proc. Natl. Acad. Sci. USA, 86: 958962.
Izadi, F., Ritland, C. & Cheng, K.M. 2011. Genetic diversity of the major histocompatibility complex region in commercial and non-commercial chicken flocks using the LEI0258 microsatellite marker. Poult. Sci., 90: 27112717.
Jensen, J.L., Bohonak, A.J. & Kelley, S.T. 2005. Isolation by distance, web service (IBDWS). BMC Genetics 6: 13. v.3.23 http://ibdws.sdsu.edu/
Lamont, S.J. 1989. The chicken major histocompatibility complex in disease resistance and poultry breeding. J. Dairy Sci., 72: 13281333.
Lang, R. 2012. GSview is a graphical interface for Ghostscript. Artifex Software, Inc. http://pages.cs.wisc.edu/~ghost/index.htm
Langella, O. 1999. Populations 1.2.28: Population genetic software. CNRS UPR9034, http://bioinformatics.org/~tryphon/populations/
Lwelamira, J., Kifaro, G.C., Gwakisa, P.S. & Msoffe, P.L.M. 2008. Association of LEI0258 microsatellite alleles with antibody response against Newcastle disease virus vaccine and body weight in two Tanzania chicken ecotypes. Afr. J. Biotechnology, 7: 714720.
Lyimo, C.M., Weigend, A., Janßen-Tapken, U., Msoffe, P.L., Simianer, H. & Weigend, S. 2013. Assessing the genetic diversity of five Tanzanian chicken ecotypes using molecular tools. South Afr. J. Animal Sci., 43: 499510.
Mogesse, H.H. 2007. Phenotypic and genetic characterization of indigenous chicken populations in Northwest Ethiopia. University of the Free State, Bloemfontein, South Africa (PhD thesis).
McConnell, S.K., Dawson, D.A., Wardle, A. & Burke, T. 1999. The isolation and mapping of 19 tetra nucleotide microsatellite markers in the chicken. Animal Genet., 30: 183189.
Mwacharo, J.M., Nomura, K., Hanada, H., Jianlin, H. & Hanotte, O. 2007. Genetic relationships among Kenyan and other East African indigenous chickens. Animal Genet., 38: 485490.
Mwacharo, J.M., Bjørnstad, G., Han, J.L. & Hanotte, O. 2013a. The history of African village chickens: an archaeological and molecular perspective. Afr. Archaeol. Rev., 30: 97114.
Mwacharo, J.M., Nomura, K., Hanada, H., Amano, T., Han, J.L. & Hanotte, O. 2013b. Reconstructing the origin and dispersal patterns of village chickens across East Africa: insights from autosomal markers. Mol. Ecol., 22: 26832697.
Nei, M. 1972. Genetic distance between populations. Am. Nat., 106: 283292.
Nielsen, R. 2005. Molecular signatures of natural selection. Annu. Rev. Genet., 39: 197218.
Nikbakht, G., Atefeh, E. & Neda, B. 2013. LEI0258 microsatellite variability in Khorasan, Marandi, and Arian Chickens. Biochem. Genet., 51: 341349.
Parmentier, H.K., Baelmans, R., Savelkoul, H.F.J., Dorny, P., Demey, F. & Berkvens, D. 2004. Serum haemolytic complement activities in 11 different MHC (B) typed chicken lines. Vet. Immunol. Immunopathol., 100: 2532.
Peakall, R. & Smouse, P.E. 2012. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics, 28: 25372539.
Pritchard, J.K., Stephens, M. & Donnerly, P. 2000. Inference of population structure using multi-locus genotype data. Genetics, 155: 945–59.
Rice, W.R. 1989. Analyzing tables of statistical tests. Evolution, 43: 223225.
Rosenberg, N.A. 2004. Distruct: a program for the graphical display of population structure. Mol. Ecol. Notes, 4: 137138.
Rousset, F. 1997. Genetic differentiation and gene flow from F-statistics under isolation by distance. Genetics, 145: 12191228.
Weir, B.S. & Cockerham, C.C. 1984. Estimation F-statistics for the analysis of population structure. Evolution, 38: 13581370.

Keywords

Type Description Title
WORD
Supplementary materials

Ngeno Supplementary Material
Table S1 and Figure S1

 Word (160 KB)
160 KB
UNKNOWN
Supplementary materials

Ngeno Supplementary Material
Figure S1

 Unknown (345 KB)
345 KB

Genetic diversity of different indigenous chicken ecotypes using highly polymorphic MHC-linked and non-MHC microsatellite markers

  • K. Ngeno (a1) (a2), E.H. van der Waaij (a2), H.J. Megens (a2), A.K. Kahi (a1), J.A.M. van Arendonk (a2) and R.P.M.A. Crooijmans (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed