Skip to main content Accessibility help

On-farm experiment designs and implications for locating research sites

  • Phil E. Rzewnicki (a1), Richard Thompson (a2), Gary W. Lesoing (a3), Roger W. Elmore (a4), Charles A. Francis (a5), Anne M. Parkhurst (a6) and Russell S. Moomaw (a5)...


Research plots that are large enough to accommodate regular farm machinery are thought to contain too much field variation to allow reliable interpretation of experimental results. This study was conducted to determine whether experimental error was controlled on a wide variety of agricultural field trials that used plots larger than normally used by researchers. The investigation included trials conducted on an experiment station and trials conducted on actual commercial farms. The planning and management of the experiments ranged from those completely conducted by university researchers to those completely done by farmers.

The level of experimental error in all the trials was well within the limits normally accepted by researchers in agronomy. Plots ranging in length from 125 to 1200 feet and as wide as one or two passes of standard farm machinery gave experimental results that were statistically sound. Statistical requirements for randomization and replication were all met.

The ability to use large plots and farmer participation enhances the testing of new technology on farms. This leads to new opportunities to test crop production factors in a systems setting under actual farm conditions. The statistical reliability of the on-farm designs analyzed in this study should increase cooperation among researchers, extension workers, and farmers in research activities.



Hide All
1.Byerlee, D., Collinson, M. P., Ferriti, R. K., Winkelmann, D. L., Biggs, S., Moscardi, E. R., Martinez, J. C., Harrington, L., and Benjamin, A.. 1980. Planning Technologies Appropriate to Farmers: Concepts and Procedures. CIMMYT, Mexico.
2.Elmore, R. W. 1986. Choose the best hybrid or variety using strip tests. Univ. of Nebraska Agronomy Dept. Profitable Crop Production newsletter. No. 86–15.
3.Francis, C. A. 1986. Dynamic integration of research and extension: igniting the SPARC. Seminar presented to Farming Systems Research and Extension Workshop, Manhatten, Kansas, 10 5–8, 8 p.
4.Francis, C. A., Parkhurst, A. M., and Thompson, R.. 1986. Designs for on-farm research: Statistical rigor and client credibility. p. 111. In Agronomy abstracts. ASA, Madison, WI.
5.Gilbert, E. H., Norman, D. W., and Winch, F. E.. 1980. Farming systems research: a critical appraisal. MSU Rural Development Paper No. 6, Dept. of Agricultural Economics, Michigan State Univ., East Lansing, Michigan.
6.Gomez, K. A. and Gomez, A. A.. 1984. Statistical Procedures for Agricultural Research, 2nd Ed.John Wiley & Sons, Inc., New York, N.Y.
7.Havlin, J., and Elmore, R.. 1984. Maximizing the use of farm strip plots. Univ. of Nebraska, NebGuide G84–723.
8.Hildebrand, P. E., and Poey, F.. 1985. On-farm Agronomic Trials in Farming Systems Research and Extension. Lynne Reinner Publ., Boulder, Colorado.
9.Horton, D. E. 1984. Social scientists in agricultural research: Lessons from the Mantaro Valley Project, Peru. Ottawa: International Development Research Centre. 67 p. (IDRC-219e).
10.Kirkby, R. A. (Ed.). 1984. Crop improvement in Eastern and Southern Africa: Research objectives and on-farm testing. A regional workshop held in Nairobi, Kenya, 20–22 July 1983. Ottawa: International Development Research Centre. 122 p. (IDRC-218e).
11.Lockeretz, W. 1987. Establishing the proper role for on-farm research. Commentary, Amer. Jour. Alter. Agric., 3:132136.
12.Martinez, J. C. and Arauz, J. R.. 1984. Developing appropriate technologies through onfarm research: The lesson from Caisan, Panama. Agricultural Administration, 17:93114.
13.Moomaw, R. 1978. Close rows can boost yields. Nebraska Farm, Ranch and Home Quarterly, Fall:1112.
14.O'Brien, V. I. 1984. Power analysis for univariate linear models: The SAS system makes it easy. p. 847852. In Proceedings of the Ninth Annual SUGI (SAS Users Group International) Conference, Hollywood Beach, Florida. 03 18–21. SAS Institute Inc., Gary, NC.
15.Olson, K. R. and Nizeyimana, E.. 1988. Effects of soil erosion on corn yields of seven Illinois soils. J. Prod. Agric., 1:1319.
16.Sanders, J. H. and Lynam, J. K.. 1982. Evaluation of new technology on farms: Methodology and some results from two crop programs at CIAT. Agricultural Systems, 9:97112.
17.SAS Institute, Inc. 1982. SAS User's Guide: Statistics. SAS Institute, Inc., Cary, NC.
18.Steel, R. G. D. and Torrie, J. H.. 1980. Principles and Procedures of Statistics: A Biometrical Approach. 2nd ed.New York: McGraw-Hill, pp. 377388.
19.Thompson, R. 1986. A farmer's approach to on-farm research design. Mimeo for discussion. Practical Farmers of Iowa, Boone, IA.


On-farm experiment designs and implications for locating research sites

  • Phil E. Rzewnicki (a1), Richard Thompson (a2), Gary W. Lesoing (a3), Roger W. Elmore (a4), Charles A. Francis (a5), Anne M. Parkhurst (a6) and Russell S. Moomaw (a5)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed