Skip to main content Accessibility help
×
Home

Energy, water, and economic savings of improved production systems on the Texas High Plains

  • Sharif M. Masud (a1) and Ronald D. Lacewell (a2)

Abstract

The purpose of this paper was to quantify economic and energy use implications of new improved irrigation and limited tillage production systems for the Texas High Plains. Per hectare uses of natural gas and electricity under alternative irrigation distribution systems for corn, sorghum, wheat, cotton, and soybeans were utilized to estimate total amounts of natural gas and electricity used in the production of these crops on the High Plains of Texas. The amount of diesel fuel used was estimated for conventional and limited tillage systems under dryland and irrigation production. Total amounts of water used for the five crops under the improved and conventional irrigation systems were also estimated for the High Plains. Results indicated improved irrigation and limited tillage systems reduced energy and water use on the High Plains. Total natural gas and electricity were estimated to decline over 20 percent, diesel fuel declined 32 percent, and water use for irrigation declined about 23 percent. Use of the improved irrigation and limited tillage production systems was also shown to significantly increase annual net returns to farmers ($40.0 million or 13.3 percent).

Copyright

References

Hide All
1.Clarke, N. P. 1980. Texas agriculture in the 1980's: The critical decade. Texas Agricultural Experiment Station Bulletin 1341. Texas A&M University, College Station, Texas.
2.Clarke, N. P. 1986. Agricultural research programs and projected needs for the Texas High Plains. Texas Agricultural Experiment Station, MP-1600. Texas A&M University, College Station, Texas. 56 pp.
3.Ellis, J. R., Lacewell, R. D., and Reneau, D. R.. 1985a. Economic implications of water-related technologies for agriculture: Texas High Plains. Texas Agricultural Experiment Station, MP-1577. Texas A&M University, College Station, Texas.
4.Ellis, J. R., Lacewell, R. D., and Reneau, D. R.. 1985b. Estimated economic impact from adoption of water-related agricultural technology. West. J. Agric. Econ. 10:307321.
5.Extension Economists-Management. 1988. Texas crop enterprise budgets. Texas Agricultural Extension Service, Texas A&M University, College Station, Texas.
6.Godfrey, C. L., Carter, C. R., and McKee, G. S.. 1967. Land resource areas of Texas. Texas Agricultural Experiment Station, B1070. Texas A&M University, College Station, Texas.
7.Hall, K. D., Lacewell, R. D., and Lyle, W. M.. 1988. Yield and economic implications of alternative irrigation systems: Texas High Plains. Texas Agricultural Experiment Station, Department of Agricultural Economics, DTR 88–1. Texas A&M University, College Station, Texas.
8.Herman, D. F., and Kohl, R. A.. 1983. Fluid dynamics of sprinkler systems. In Jensen, M. E. (ed.). Design and Operation of Farm Irrigation Systems. American Society of Agricultural Engineers, St. Joseph, Michigan.
9.Hughes, W. F., and Harman, W. L.. 1969. Projected economic life of water resources, subdivision number 1, High Plains underground water reservoir. Texas Agricultural Experiment Station Monograph 6. Texas A&M University, College Station, Texas.
10.Kelly, J. S. 1977. The situation in Texas on fuel for irrigation. In Lockeretz, William (ed.). Agriculture and Energy. Academic Press, New York, New York 165:169.
11.Knowles, T. R. 1984. Assessment of the groundwater resources of the Texas High Plains. In Whetstone, G. A. (ed.). Proceedings of the Ogallala Aquifer Symposium II. Texas Tech University, Lubbock, Texas 217:237.
12.Lacewell, R. D. 1989. Economic feasibility of irrigation with waste water, Austin vicinity. Prepared for the Lower Colorado River Authority, 3513 Parkway Terrace, Bryan, Texas.
13.Lansford, V. D., Harman, W. L., and Musick, J. T.. 1987. The Texas High Plains: Adjustments to changing economic and resource conditions, 1970–87. Texas Agricultural Experiment Station, MP-1637. Texas A&M University, College Station, Texas.
14.Laughlin, D. H., Lacewell, R. D., and Moore, D. S.. 1980. The agricultural benefits of salinity control on the Red River of Texas and Oklahoma. Texas Water Resources Institute, TR-112, Texas A&M University, College Station, Texas.
15.Lee, J. G., Ellis, J. R., and Lacewell, R. D.. 1985. Valuation of improved irrigation efficiency from an exhaustible groundwater source. Water Resources Bulletin 21:441447.
16.Lyle, W. M., and Dixon, D. R.. 1977. Basin tillage for rainfall retention. Transaction of the ASAE 20:10131021.
17.Lyle, W. M., and Bordovsky, J. P.. 1980. New irrigation system design for maximizing irrigation efficiency and increasing rainfall utilization. Texas Water Resources Institute, TRIOS. Texas A&M University, College Station, Texas.
18.Lyle, W. M., Bordovsky, J. P., Urubel, L., and Lorenz, D. C.. 1981. Evaluation of low energy, precision application (LEPA) irrigation method at the Texas Agricultural ExperimentStation, Halfway, Texas, 1981. Annual Progress Report, Texas Agricultural Experiment Station at the High Plains Research Foundation.
19.Masud, S. M., and Lacewell, R. D.. 1989. Economic and energy use implications of limited tillage and improved irrigation systems: Texas High Plains. Project completion report to the Center for Energy and Mineral Resources, Texas A&M University, College Station, Texas.
20.Office of Technology Assessment (OTA). 1982. Impacts of technology on U.S. cropland and rangeland productivity. U.S. Government Printing Press Office, Washington, DC.
21.Petty, J. A., Lacewell, R. D., Hardin, D. C., and Whitson, R. E.. 1979. Impact of alternative energy prices, tenure arrangements, and irrigation technologies in a typical High Plains farm. Texas Water Resources Institute, TR-106. Texas A&M University, College Station, Texas.
22.Schefter, J. E. 1984. Declining groundwater levels and increasing pumping costs: Floyd County, Texas—a case study. National Water Summary 1984—Hydrologic Perspectives, Water Supply. Paper No. 2275, U.S. Geological Survey, Washington, DC.
23.Sloggett, G. 1982. Energy and U.S. agriculture: Irrigation pumping, 1974–80. EconomicResearch Service, AER No. 495. U.S. Department of Agriculture, Washington, DC.
24.Sweeten, M., and Jordan, W. R.. 1987. Irrigation water management for the Texas High Plains: A research summary. Texas Water Resources Institute, TR-139. Texas A&M University, College Station, Texas.
25.Texas Water Development Board. 1986. Surveys of irrigation in Texas 1958, 1964, 1969, 1974,1979 and 1984. Report 294, Austin, Texas.
26.U.S. Department of Commerce. 1984. Census of Agriculture, 1978 and 1982, Washington, DC.
27.Victurine, R. F., Goodwin, H. L., and Lacewell, R. D.. 1985. Economic implications of applying effluent for irrigation in the Texas High Plains. Texas Agricultural Experiment Station Bulletin 1497. Texas A&M University, College Station, Texas.
28.Wyatt, W. 1981. High Plains Underground Water Conservation District No. 1, unpublished irrigation system efficiency evaluations, 1978–1981.

Keywords

Energy, water, and economic savings of improved production systems on the Texas High Plains

  • Sharif M. Masud (a1) and Ronald D. Lacewell (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed