Skip to main content Accessibility help

Comparison of soil properties as influenced by organic and conventional farming systems

  • John P. Reganold (a1)


This paper summarizes data from previous and current studies on two adjacent farms, one organically managed and the other conventionally managed, in the Palouse region of eastern Washington. The 320-hectare organic farm has been managed without the use of commercial fertilizers and only limited use of pesticides since the farm was first plowed in 1909. The 525-hectare conventional farm, first cultivated in 1908, began receiving recommended rates of commercial fertilizers and pesticides in 1948 and the early 1950's, respectively. The organically-farmed Naff silt loam soil had significantly higher organic matter, cation exchange capacity, total nitrogen, extractable potassium, water content, pH, polysaccharide content, enzyme levels, and microbial biomass than did the conventionally-farmed Naff soil. Also, the organically-farmed soil had significantly lower modulus of rupture, more granular structure, less hard and more friable consistence, and 16 centimeters more topsoil. This topsail difference between farms was attributed to significantly greater erosion on the conventionally-farmed soil between 1948 and 1985. The difference in erosion rates between farms was most probably due to their different crop rotation systems; Le., only the organic farm included a green manure crop in its rotation, and it had different tillage practices. These studies indicate that, in the long-term, the organic farming system was more effective than the conventional farming system in maintaining the tilth and productivity of the Naff soil and in reducing its loss to erosion.



Hide All
1.Action, C. J., Rennie, D. A., and Paul, E. A.. 1963. The relationship of polysaccharides to soil aggregation. Can J. Soil Sci. 43:201209.
2.Allison, F. E. 1968. Soil aggregation—some facts and fallicies as seen by a microbiologist. Soil Sci. 106(2):136143.
3.Allison, F. E. 1973. Soil Organic Matter and Its Role in Crop Production. Elsevier, New York, 639 pp.
4.Arden-Clark, C., and Hodges, R. D.. 1987. The environmental effects of conventional and organic/biological farming systems. I. Soil erosion, with special reference to Britain. Biol. Agric. Hort. 4:309357.
5.Black, C. A. 1968. Soil-Plant Relationships (2nd Edition). John Wiley & Sons, Inc., New York. 792 pp.
6.JrBolton, H., Elliott, L. F., Papendick, R. I., and Bezdicek, D. F.. 1985. Soil microbial biomass and selected soil enzyme activities: Effect of fertilization and cropping practices. Soil Biol. Biochem. 17(3):297302.
7.Bouyoucos, G. J. 1951. A recalibration of the hydrometer method for making mechanical analysis of soils. Agron. J. 43:434438.
8.Brady, N. C. 1984. The Nature and Properties of Soils (9th Edition). Macmillan, New York. 750 pp.
9.Bramble-Brodahl, M., Fosberg, M. A., Walker, D. J., and Falen, A. L.. 1985. Changes in soil productivity related to changing topsoil depths on two Idaho Palouse soils. In McCool, D. K. (ed.) Erosion and Soil Productivity. Amer. Soc. Agric. Eng., St. Joseph, Mich. pp. 1827.
10.Brink, R. H. Jr., Dunbach, P., and Lynch, D. L.. 1960. Measurement of carbohydrates in soil hydrolyzates with anthrone. Soil Sci. 89:157166.
11.Buol, S. W., Hole, F. D., and McCracken, R. J.. 1980. Soil Genesis and Classification (2nd Edition). Iowa State Univ. Press, Ames.404 pp.
12.Busacca, A. J., McCool, D. K., Papendick, R. I., and Young, D. L.. 1985. Dynamic impacts of erosion processes on productivity of soils in the Palouse. In McCool, D. K. (ed.) Erosion and Soil Productivity. Amer. Soc. Agric. Eng., St Joseph, Mich. pp. 152169.
13.Clancy, K. L. 1986. The role of sustainable agriculture in improving the safety and quality of the food supply. Amer. J. Altern. Agric. 1(1):1118.
14.Crosson, P. R., with Stout, A. T.. 1983. Productivity Effects of Cropland Erosion in the United States. Resources for the Future, Inc., Washington, D. C.103 pp.
15.Dahlgren, R. B. 1967. The pheasant decline. South Dakota Department of Game, Fish and Parks, Pierre. 44 pp.
16.Daniels, R. B., Gilliam, J. W., Cassei, D. K., and Nelson, L. A.. 1987. Quantifying the effects of past soil erosion on present soil productivity. J. Soil Water Conserv. 42(3):183187.
17.Day, P. R. 1965. Particle fractionation and particle-size analysis: Hydrometer method of particle-size analysis. In C. A. Black (ed.-inchief) Methods of Soil Analysis, Part 1: Physical and Mineralogical Properties, Including Statistics of Measurement and Sampling. Agronomy Monograph No. 9, Am. Soc. Agron., Inc., Madison, WI. pp. 545567.
18.Dormaar, J. F., Pittman, U. J., and Spratt, E. D.. 1979. Burning crop residues: Effect on selected soil characteristics and long-term wheat yields. Can. J. Soil Sci. 59:7986.
19.Everts, C., and Riehle, H.. 1980. Soil erosion: How much? Current Information Series No. 563, University of Idaho Cooperative Extension Service, Moscow. 3 pp.
20.FitzPatrick, E. A. 1986. An Introduction to Soil Science (2nd Edition). Longman Scientific & Technical, Essex, England. 255 pp.
21.Hallberg, G. R. 1987. Agricultural chemicals in ground water: Extent and implications. Amer. J. Altern. Agric. 2(1):315.
22.Hausenbuiller, R. L. 1985. Soil Science Principles and Practices (3rd Edition). Wm. C. Brown Company Publishers, Dubuque, Iowa. 610 pp.
23.Hertz, M. 1988. Implementing CRP: Progress and prospects. J. Soil Water Conserv. 43(1):1416.
24.Hillel, D. 1982. Introduction to Soil Physics. Academic Press, Inc, New York. 364 pp.
25.Horner, G. M., McCall, A. G., and Bell, F. G.. 1944. Investigations in erosion control and the reclamation of eroded land at the Palouse conservation experiment station, Pullman, Wash. 1931–1942. U.S.D.A. Tech. Bul. 860. U.S. Government Printing Office, Washington, D.C.83 pp.
26.Jamison, V. C., Smith, D. D., and Thornton, J. F.. 1968. Soil and water research on a claypan soil. Tech. Bull. No. 1379. Agric. Res. Serv., U. S. Dept. of Agric., U. S. Government Printing Office, Wash., D. C.111 pp.
27.Jenny, H. 1941. Factors of Soil Formation. McGraw-Hill, New York. 281 pp.
28.Johnson, C. B., and Modenhauer, W. C.. 1979. Effect of chisel versus moldboard plowing on soil erosion by water. Soil Sci. Soc. Am. J. 43:177179.
29.Johnston, A. E. 1986. Soil organic matter, effects on soils and crops. Soil Use Mngt. 2(3):97105.
30.Kaiser, V. G. 1961. Historical land use and erosion in the Palouses—A reappraisal. Northwest Sci. 35(4):139153.
31.Kent, R. L. 1957. Conservation crop rotations in the Pacific Northwest. J. Soil Water Conserv. 12(6):269272.
32.Klaas, E. E. 1982. Effects of pesticides on nontarget organisms. In Dahlgren, R. B. (Compiler) Proceedings of the Midwest Agricultural Interfaces with Fish and Wildlife Resources Workshop. Iowa Coop. Wild. Res. Unit, Iowa State Univ., Ames. pp. 79.
33.Larson, W. E., Pierce, F. J., and Dowdy, R. H.. 1983. The threat of soil erosion to long-term crop production. Science. 219:458465.
34.Lockeretz, W., Shearer, G., and Kohl, D. H.. 1981. Organic farming in the corn belt. Science. 211:540547.
35.Lynch, J. M. 1981. Promotion and inhibition of soil aggregate stabilization by micro-organisms. J. Gen. Microbiol. 126:371375.
36.Mannering, J. V., Johnson, L. C., Meyer, L. D., and Jones, B. A.. 1964. The erosion-control effectiveness of rotation meadows. J. Soil Water Conserv. 19(3):9195.
37.Martin, J. P. 1945. Micro-organisms and soil aggregation. I. Soil Sci. 59:163174.
38.Martin, J. P. 1946. Micro-organisms and soil aggregation. II. Soil Sci. 61:157166.
39.Metting, B., and Rayburn, W. R.. 1983. The influence of a microalgal conditioner on selected Washington soils: An empirical study. Soil Sci. Soc. Am. J. 47:682685.
40.Miller, M. F., and Krusekopf, H. H.. 1932. The influence of systems of cropping and methods of culture on surface runoff and soil erosion. Bull. No. 177. Missouri Agric. Exp. Station, Columbia. 32 pp.
41.Molope, M. B., Grieve, I. C., and Page, E. R.. 1987. Contributions by fungi and bacteria to aggregate stability of cultivated soils. J. Soil Sci. 38:7177.
42.Mulla, D. J. 1986. Distribution of slope steepness in the Palouse region of Washington. Soil Sci. Soc. Am. J. 50(6):14011406.
43.Oelhaf, R. C. 1978. Organic Agriculture: Economic and Ecological Comparisons with Conventional Methods. Allanheid, Osmun and Co., Publishers, Inc., Montclair, N. J.271 pp.
44.Olson, K. R., and Nizeyimana, E.. 1988. Effects of soil erosion on corn yields of seven Illinois soils. J. Prod. Agric. 1(1):1319.
45.Papendick, R. I., Elliott, L. F., and Dahlgren, R. B.. 1986. Environmental consequences of modern production agriculture: How can alternative agriculture address these issues and concerns? Amer. J. Altern. Agric. 1(1):310.
46.Peach, M., and English, L.. 1944. Rapid microchemical soil tests. Soil Sci. 57:167196.
47.Poincelot, R. P. 1986. Toward a More Sustainable Agriculture. AVI Publishing Company, Inc., Westport, Conn.241 pp.
48.Reeve, R. C. 1965. Modulus of rupture. In Black, C. A. (ed.-in-chief) Methods of Analysis, Part I: Physical and Mineralogical Properties, Including Statistics of Measurement and Sampling. Agronomy Monograph No. 9, Am. Soc. Agron., Inc., Madison, WI. pp. 466476.
49.Reganold, J. P., Elliott, L. F., and Unger, Y. L.. 1987. Long-term effects of organic and conventional farming on soil erosion. Nature. 330:370372.
50.Russell, E. W. 1973. Soil Conditions and Plant Growth (10th Edition). Longman, London. 849 pp.
51.Schertz, D. L. 1983. The basis for soil loss tolerances. J. Soil Water Conserv. 38(1):1014.
52.Schertz, D. L., Moldenhauer, W. C., Franzmeier, D. P., and Sinclair, H. R. Jr. 1985. Field evaluation of the effect of soil erosion on crop productivity. In McCool, D. K. (ed.) Erosion and Soil Productivity. Amer. Soc. Agric. Eng., St. Joseph, Mich. pp. 917.
53.Schwendiman, J. L. 1957. Propagation of cover areas: Well managed conservation seedings help wildlife. Wash. Agric. Expt. Sta. Circ. 295. Pullman, Wash. pp. 3133.
54.Schwendiman, J. L., and Kaiser, V. G.. 1960. Alfalfa to replace sweetclover for dryland green manure crop rotations in the Pacific Northwest. J. Soil Water Conserv. 15(6):257263.
55.Soil Conservation Service and Washington Agricultural Experiment Station. 1968. Soil Survey of Spokane County, Washington. U. S. Dept of Agric., U. S. Government Printing Office, Wash., D. C. 143 pp. plus maps.
56.Soil Conservation Service and Washington State University Agricultural Research Center. 1980. Soil Survey of Whitman County, Washington. U. S. Dept. of Agric., U. S. Government Printing Office, Wash., D. C. 185 pp. plus maps.
57.Soil Conservation Service, Forest Service, and Economics, Statistics and Cooperatives Service. 1979. Palouse Co-operative River Basin Study. U. S. Dept. of Agric., Wash., D. C. 182 pp.
58.Soil Survey Staff. 1951. Soil Survey Manual. USDA Agric. Handb No. 18, U. S. Government Printing Office, Wash., D. C. 503 pp.
59.Stark, R. H., Hafenrichter, A. L., and Moss, W. A.. 1950. Adaptation of grasses for soil and water conservation at high altitudes. Agron. J. 42(3):124127.
60.Tisdale, S. L., Nelson, W. L., and Beaton, J. D.. 1985. Soil Fertility and Fertilizers (4th Edition). Macmillan Publishing Company, NY. 754 pp.
61.Uhland, R. E. 1949. Crop yields lowered by erosion. USDA-SCS-Technical Paper-75, USDA Soil Conservation Service, Wash., D. C.27 pp.
62.Uhland, R. E. 1958. Winter cover crops. J. Soil Water Conserv. 13(5):207–14.
63.U. S. Department of Agriculture. 1980. Report and recommendations on organic fanning. A special report prepared for the Secretary of Agriculture, U. S. Government Printing Office, Wash., D. C. 94 pp.
64.United States Salinity Laboratory Staff. 1954. Diagnosis and Improvement of Saline and Alkali Soils. Agricultural Handbook No. 60. U. S. Dept. Agric., U. S. Government Printing Office, Wash., D. C. 160 pp.
65.Webber, L. R. 1964. Soil physical properties and erosion control. J. Soil Water Conserv. 19(1):2830.
66.Weilgart Patten, A. G. 1982. Comparison of nitrogen and phosphorus flows on an organic and conventional farm. M. S. Thesis. Washington State University, Pullman. 108 pp.
67.JrWhite, A. W., Bruce, R. R., Thomas, A. W., Langdale, G. W., and Perkins, H. F.. 1985. Characterizing productivity of eroded soils in the Southern Piedmont. In McCool, D. K. (ed.) Erosion and Productivity. Amer. Soc. of Agric. Eng., St. Joseph, Mich. pp. 8395.
68.Wischmeier, W. H., and Smith, D. D.. 1978. Predicting Rainfall Erosion Losses. USDA Agric. Handb. 537, U. S. Government Printing Office, Wash., D.C.
69.Woods, J. E., Hafenrichter, A. L., Schwendiman, J. L., and Law, A. G.. 1953. The effect of grasses on yield of forage and production of roots by alfalfa-grass mixtures with special reference to soil conservation. Agron. J. 45(12):590595.
70.Young, D. L., Taylor, D. B., and Papendick, R. I.. 1985. Separating erosion and technology impacts on winter wheat yields in the Palouse. A statistical approach. In McCool, D. K. (ed.) Erosion and Productivity. Amer. Soc. of Agric. Eng., St. Joseph, Mich. pp. 130142.


Related content

Powered by UNSILO

Comparison of soil properties as influenced by organic and conventional farming systems

  • John P. Reganold (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.