Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-19T21:45:17.046Z Has data issue: false hasContentIssue false

Using 3D Models to Understand the Changing Role of Fluting in Paleoindian Point Technology from Clovis to Dalton

Published online by Cambridge University Press:  20 April 2022

Ashley M. Smallwood*
Affiliation:
Department of Anthropology and Center for Archaeology and Cultural Heritage, University of Louisville, Louisville, KY, USA
Thomas A. Jennings*
Affiliation:
Department of Anthropology and Center for Archaeology and Cultural Heritage, University of Louisville, Louisville, KY, USA
Heather L. Smith*
Affiliation:
Department of Anthropology, Texas State University, San Marcos, TX, USA
Charlotte D. Pevny
Affiliation:
SEARCH Inc., New Orleans, LA, USA
Michael R. Waters
Affiliation:
Department of Anthropology and Center for the Study of the First Americans, Texas A&M University, College Station, TX, USA
Thomas J. Loebel
Affiliation:
Illinois State Archaeological Survey, Champaign, IL, USA
John Lambert
Affiliation:
Illinois State Archaeological Survey, Champaign, IL, USA
Jacob Ray
Affiliation:
Department of Anthropology and Center for Archaeology and Cultural Heritage, University of Louisville, Louisville, KY, USA
Devin Stephens
Affiliation:
Department of Anthropology and Center for Archaeology and Cultural Heritage, University of Louisville, Louisville, KY, USA

Abstract

Fluting is a technological and morphological hallmark of some of the most iconic North American Paleoindian stone points. Through decades of detailed artifact analyses and replication experiments, archaeologists have spent considerable effort reconstructing how flute removals were achieved, and they have explored possible explanations of why fluting was such an important aspect of early point technologies. However, the end of fluting has been less thoroughly researched. In southern North America, fluting is recognized as a diagnostic characteristic of Clovis points dating to approximately 13,000 cal yr BP, the earliest widespread use of fluting. One thousand years later, fluting occurs more variably in Dalton and is no longer useful as a diagnostic indicator. How did fluting change, and why did point makers eventually abandon fluting? In this article, we use traditional 2D measurements, geometric morphometric (GM) analysis of 3D models, and 2D GM of flute cross sections to compare Clovis and Dalton point flute and basal morphologies. The significant differences observed show that fluting in Clovis was highly standardized, suggesting that fluting may have functioned to improve projectile durability. Because Dalton points were used increasingly as knives and other types of tools, maximizing projectile functionality became less important. We propose that fluting in Dalton is a vestigial technological trait retained beyond its original functional usefulness.

El acanalado es un sello distintivo de muchas puntas de piedra paleoindias de América del Norte. A lo largo de décadas de análisis de artefactos y experimentos de replicación, los arqueólogos han reconstruido cómo se lograron las remociones de flautas y exploraron posibles explicaciones de por qué las flautas fueron un aspecto tan importante de las primeras tecnologías de puntos. Sin embargo, el final del acanalado se ha investigado menos a fondo. En el sur de América del Norte, el acanalado se reconoce como una característica diagnóstica de las puntas de Clovis que data de ~13.000 cal año aP, el primer uso generalizado del acanalado. Mil años después, las acanaladuras ocurren de manera más variable en Dalton y ya no son útiles como indicador de diagnóstico. ¿Cómo cambió el fluting y por qué los creadores de puntos finalmente abandonaron el fluting? En este documento, utilizamos mediciones 2D tradicionales, análisis morfométrico geométrico (GM) de modelos 3D y GM 2D de secciones transversales de flauta para comparar las morfologías basales y de flauta de punta de Clovis y Dalton. Las diferencias significativas observadas muestran que el acanalado en Clovis estaba altamente estandarizado, lo que sugiere que el acanalado puede haber funcionado para mejorar la durabilidad del proyectil. Debido a que las puntas de Dalton se usaban cada vez más como cuchillos y otros tipos de herramientas, maximizar la funcionalidad de los proyectiles se volvió menos importante. Proponemos que el acanalado en Dalton es un rasgo tecnológico vestigial retenido más allá de su utilidad funcional original.

Type
Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of the Society for American Archaeology

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References Cited

Adams, Dean. C., Rohlf, F. James, and Dennis Slice, E. 2004 Geometric Morphometrics: Ten Years of Progress Following the “Revolution.” Italian Journal of Zoology 71:516.CrossRefGoogle Scholar
Ahler, Stanley A., and Geib, Phil R. 2000 Why Flute? Folsom Point Design and Adaptation. Journal of Archaeological Science 27:799820.Google Scholar
Anderson, David G. 1990 The Paleoindian Colonization of Eastern North America: A View from the Southeastern United States. In Early Paleoindian Economies of Eastern North America, edited by Tankersley, Kenneth B. and Isaac, Barry L., pp. 163216. Research in Economic Anthropology Supplement 5. JAI Press, Greenwich, Connecticut.Google Scholar
Anderson, David G., and Miller, D. Shane 2017 PIDBA (Paleoindian Database of the Americas): Call for Data. PaleoAmerica 3:15.CrossRefGoogle Scholar
Anderson, David G., Smallwood, Ashley M., and Miller, D. Shane 2015 Early Human Settlement in the Southeastern United States: Current Evidence and Future Directions. PaleoAmerica 1:145.Google Scholar
Andrefsky, William Jr. 2005 Lithics: Macroscopic Approaches to Analysis. 2nd ed. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Bamforth, Douglas B., and Finlay, Nyree 2008 Introduction: Archaeological Approaches to Lithic Production Skill and Craft Learning. Journal of Archaeological Method and Theory 15:127.CrossRefGoogle Scholar
Bement, Leland C. 2002 Pickin’ Up the Pieces: Folsom Projectile Point Resharpening Technology. In Folsom Technology and Lifeways, edited by Clark, John E. and Collins, Michael B., pp. 135140. Special Publications No. 4, Lithic Technology. Department of Anthropology, University of Tulsa, Tulsa, Oklahoma.Google Scholar
Bookstein, Fred L. 1991 Morphometric Tools for Landmark Data: Geometry and Biology. Cambridge University Press, New York.Google Scholar
Bousman, C. Britt, Baker, Barry W., and Kerr, Anne C. 2004 Paleoindian Archaeology in Texas. In The Prehistory of Texas, edited by Perttula, Timothy K., pp. 1597. Texas A&M Press, College Station.Google Scholar
Bradley, Bruce A. 1997 Sloan Site Biface and Projectile Point Technology. In Sloan: A Paleoindian Dalton Cemetery in Arkansas, edited by Morse, Dan F., pp. 5357. Smithsonian Institution, Washington, DC.Google Scholar
Bradley, Bruce A., and Collins, Michael B. 2013 Imagining Clovis as a Cultural Revitalization Movement. In Paleoamerican Odyssey, edited by Graf, Kelly E., Ketron, Caroline V., and Waters, Michael R., pp. 247256. Center for the Study of the First Americans, Texas A&M University, College Station.Google Scholar
Bradley, Bruce A., Collins, Michael B., and Hemmings, Andrew 2010 Clovis Technology. International Monographs in Prehistory, Ann Arbor, Michigan.Google Scholar
Brantingham, P. Jeffrey, and Kuhn, Steven L. 2001 Constraints on Levallois Core Technology: A Mathematical Model. Journal of Archaeological Science 28:747761.CrossRefGoogle Scholar
Buchanan, Briggs 2006 An Analysis of Folsom Projectile Point Resharpening Using Quantitative Comparisons of Form and Allometry. Journal of Archaeological Science 33:185199.Google Scholar
Buchanan, Briggs, and Collard, Mark 2010 A Geometric Morphometrics-Based Assessment of Blade Shape Differences among Paleoindian Projectile Point Types from Western North America. Journal of Archaeological Science 37:350359.CrossRefGoogle Scholar
Buchanan, Briggs, Collard, Mark, Hamilton, Marcus J., and O'Brien, Michael J. 2011 Points and Prey: A Quantitative Test of the Hypothesis That Prey Size Influences Early Paleoindian Projectile Point Form. Journal of Archaeological Science 38:852864.CrossRefGoogle Scholar
Buchanan, Briggs, Collard, Mark, and O'Brien, Michael J. 2020 Geometric Morphometric Analyses Support Incorporating the Goshen Point Type into Plainview. American Antiquity 85:171181.CrossRefGoogle Scholar
Buchanan, Briggs, and Hamilton, Marcus J. 2020 Scaling Laws of Paleoindian Projectile Point Design. Journal of Archaeological Method and Theory 28:580602.CrossRefGoogle Scholar
Buchanan, Briggs, David Kilby, J., Huckell, Bruce B., O'Brien, Michael J., and Collard, Mark 2012 A Morphometric Assessment of the Intended Function of Cached Clovis Points. PLoS ONE 7(2):e30530. DOI:10.1371/journal.pone.0030530.CrossRefGoogle ScholarPubMed
Buchanan, Briggs, O'Brien, Michael J., and Collard, Mark 2014 Continent-Wide or Region-Specific? A Geometric Morphometrics-Based Assessment of Variation in Clovis Point Shape. Archaeological and Anthropological Sciences 6:145162.CrossRefGoogle Scholar
Buchanan, Briggs, O'Brien, Michael J., David Kilby, J., Huckell, Bruce B., and Collard, Mark 2012 An Assessment of the Impact of Hafting on Paleoindian Point Variability. PLoS ONE 7(5):e36364. DOI:10.1371/journal.pone.0036364.CrossRefGoogle ScholarPubMed
Callahan, Errett 1979 Basics of Biface Knapping in the Eastern Fluted Point Tradition: A Manual for Flintknappers and Lithic Analysts. Archaeology of Eastern North America 7:1180.Google Scholar
Cignoni, Paolo, Callieri, Marco, Corsini, Massimiliano, Dellepiane, Matteo, Ganovelli, Fabio, and Ranzuglia, Guido 2008 MeshLab: An Open-Source Mesh Processing Tool. In Sixth Eurographics Italian Chapter Conference, edited by Scarano, Vittorio, De Chiara, Rosario, and Erra, Ugo, pp. 129136. Eurographics Association, Geneva, Switzerland. DOI:10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136.Google Scholar
Cook, Harold J. 1928 Glacial Age Man in New Mexico. Scientific American 139:3840.CrossRefGoogle Scholar
Daniel, I. Randolph Jr. 1998 Hardaway Revisited: Early Archaic Settlement in the Southeast. University of Alabama Press, Tuscaloosa.Google Scholar
Davis, Loren G., Bean, Daniel W., and Nyers, Alexander J. 2017 Morphometric and Technological Attributes of Western Stemmed Tradition Projectile Points Revealed in a Second Artifact Cache from the Cooper's Ferry Site, Idaho. American Antiquity 82:536557.CrossRefGoogle Scholar
Eerkens, Jelmer, and Bettinger, Robert 2008 Cultural Transmission and the Analysis of Stylistic and Functional Variation. In Cultural Transmission and Archaeology: Issues and Case Studies, edited by O'Brien, Michael J., pp. 2138. Society for American Archaeology, Washington, DC.Google Scholar
Ellis, Christopher, and Payne, James H. 1995 Estimating Failure Rates in Fluting Based on Archaeological Data: Examples from NE North America. Journal of Field Archaeology 22:459474.Google Scholar
Eren, Metin I., Bebber, Michelle R., Knell, Edward J., Story, Brett, and Buchanan, Briggs 2022 Plains Paleoindian Projectile Point Penetration Potential. Journal of Anthropological Research 78:84112.CrossRefGoogle Scholar
Eren, Metin I., and Buchanan, Briggs 2016 Clovis Technology. In eLS, John Wiley & Sons. DOI:10.1002/9780470015902.CrossRefGoogle Scholar
Eren, Metin I., Meltzer, David J., and Andrews, Brian N. 2018 Is Clovis Technology Unique to Clovis? PaleoAmerica 4:202228.CrossRefGoogle Scholar
Eren, Metin I., Meltzer, David J., and Andrews, Brian N. 2021 Clovis Technology Is Not Unique to Clovis. PaleoAmerica 7:226241.Google Scholar
Eren, Metin I., Patten, Robert J., O'Brien, Michael J., and Meltzer, David J. 2013 Refuting the Technological Cornerstone of the Ice-Age Atlantic Crossing Hypothesis. Journal of Archaeological Science 40:29342941.CrossRefGoogle Scholar
Eren, Metin I., Roos, Christopher I., Story, Brett A., von Cramon-Taubadel, Noreen, and Lycett, Stephen J. 2014 The Role of Raw Material Differences in Stone Tool Shape Variation: An Experimental Assessment. Journal of Archaeological Science 49:472487.CrossRefGoogle Scholar
Frison, George C. 1993 North American High Plains Paleo-Indian Hunting Strategies and Weaponry Assemblages. In From Kostenki to Clovis: Upper Paleolithic–Paleo-Indian Adaptations, edited by Soffer, Olga and Praslov, Nikolai Dmitrievich, pp. 237249. Plenum Press, New York.CrossRefGoogle Scholar
Gadi, Herzlinger, and Goren-Inbar, Naama 2020 Beyond a Cutting Edge: A Morpho-Technological Analysis of Acheulian Handaxes and Cleavers from Gesher Benot Ya‘aqov, Israel. Journal of Paleolithic Archaeology 3:3358.Google Scholar
Gadi, Herzlinger, Goren-Inbar, Naama, and Grosman, Leore 2017 A New Method for 3D Geometric Morphometric Shape Analysis: The Case Study of Handaxe Knapping Skill. Journal of Archaeological Science: Reports 14:163173.Google Scholar
Gadi, Herzlinger, and Grosman, Leore 2018 AGMT3-D: A Software for 3-D Landmarks-Based Geometric Morphometric Shape Analysis of Archaeological Artifacts. PLoS ONE 13(11):e0207890. DOI:10.1371/journal.pone.0207890.Google Scholar
Gillam, J. Christopher 1996 A View of Paleoindian Settlement from Crowley's Ridge. Plains Anthropologist 41:273286.CrossRefGoogle Scholar
Gingerich, Joseph A. M., Sholts, Sabrina B., Wärmländer, Sebastian, and Stanford, Dennis Joe 2014 Fluted Point Manufacture in Eastern North America: An Assessment of Form and Technology Using Traditional Metrics and 3D Digital Morphometrics. World Archaeology 46:101122.CrossRefGoogle Scholar
Goodyear, Albert C. III 1974 The Brand Site: A Techno-Functional Study of a Dalton Site in Northeast Arkansas. Research Series 7. Arkansas Archaeological Survey, Fayetteville.Google Scholar
Goswami, Anjali, and Polly, P. David 2010 Methods for Studying Morphological Integration and Modularity. Paleontological Society Papers 16:212243.CrossRefGoogle Scholar
Hester, James J. 1972 Blackwater Draw Locality No. 1: A Stratified Early Man Site in Eastern New Mexico. Publication No. 8. Fort Burgwin Research Center, Ranchos de Taos, New Mexico.Google Scholar
Higgins, Michael J., Fortier, Andrew C., Jackson, Douglas K., Parker, Kathryn E., and Simon, Mary 1990 The Nochta Site: The Early, Middle, and Late Archaic Occupations. University of Illinois Press, Champaign.Google Scholar
Huckell, Bruce, Vance Haynes, C., and Holliday, Vance T. 2019 Comments on the Lithic Technology and Geochronology of the Goodson Rock Shelter. PaleoAmerica 6:131134.CrossRefGoogle Scholar
Hunzicker, David A. 2008 Folsom Projectile Technology: An Experiment in Design, Effectiveness and Efficiency. Plains Anthropologist 53:291311.CrossRefGoogle Scholar
Jennings, Thomas. A. 2008 San Patrice: An Example of Late Paleoindian Adaptive Versatility in South-Central North America. American Antiquity 73:539559.CrossRefGoogle Scholar
Jennings, Thomas. A. 2010 Exploring the San Patrice Lanceolate to Notched Hafting Transition. In Exploring Variability in Early Holocene Hunter-Gatherer Lifeways, edited by Hurst, Stance and Hofman, Jack L., pp. 153166. Publications in Anthropology 25. University of Kansas, Lawrence.Google Scholar
Jennings, Thomas. A. 2013 The Hogeye Clovis Cache, Texas: Quantifying Lithic Reduction Signatures. Journal of Archaeological Science 40:649658.CrossRefGoogle Scholar
Jennings, Thomas. A. 2016 The Impact of Stone Supply Stress on the Innovation of a Cultural Variant: The Relationship of Folsom and Midland. PaleoAmerica 2:116123.Google Scholar
Jennings, Thomas A., and Smallwood, Ashley M. 2019 The Clovis Record. SAA Archaeological Record 19(3):4550.Google Scholar
Jennings, Thomas A., Smallwood, Ashley M., and Pevny, Charlotte D. 2021 Reviewing the Role of Experimentation in Reconstructing Paleoamerican Lithic Technologies. PaleoAmerica 7:5367.CrossRefGoogle Scholar
Jennings, Thomas A., and Waters, Michael R. 2014 Pre-Clovis Lithic Technology at the Debra L. Friedkin Site, Texas: Comparisons to Clovis through Site-Level Behavior, Technological Trait-List, and Cladistic Analyses. American Antiquity 79:2544.Google Scholar
Jodry, Margaret 1999 Folsom Technological and Socioeconomic Strategies: Views from Stewart's Cattle Guard and the Upper Rio Grande Basin, Colorado. PhD dissertation, Department of Anthropology, American University, Washington, DC.Google Scholar
Kay, Marvin 1996 Microwear Analysis of Some Clovis and Experimental Chipped Stone Tools. In Stone Tools: Theoretical Insights into Human Prehistory, edited by Odell, George H., pp. 315344. Plenum Press, New York.CrossRefGoogle Scholar
Key, Alastair, Proffitt, Tomos, and de la Torre, Ignaciao 2020 Raw Material Optimization and Stone Tool Engineering in the Early Stone Age of Olduvai Gorge (Tanzania). Journal of the Royal Society Interface 17:20190377. DOI:10.1098/rsif.2019.0377.CrossRefGoogle Scholar
Klingenberg, Christian Peter 2011 MorphoJ: An Integrated Software Package for Geometric Morphometrics. Molecular Ecology Resources 11:353357.CrossRefGoogle ScholarPubMed
Klingenberg, Christian Peter, and Monteiro, Leandro R. 2005 Distances and Directions in Multidimensional Shape Spaces: Implications for Morphometric Applications. Systematic Biology 54:678688.CrossRefGoogle ScholarPubMed
Koldehoff, Brad, and Loebel, Thomas J. 2009 Clovis and Dalton: Unbounded and Bounded Systems in the Midcontinent of North America. In Lithic Materials and Paleolithic Societies, edited by Adams, Brian A. and Blades, Brooke S., pp. 270287. Wiley-Blackwell, New York.CrossRefGoogle Scholar
Koldehoff, Brad, and Walthall, John A. 2004 Settling In: Hunter-Gatherer Mobility during the Pleistocene-Holocene Transition in the Central Mississippi Valley. In Aboriginal Ritual and Economy in the Eastern Woodlands: Essays in Memory of Howard Dalton Winters, edited by Cantwell, Anne-Marie, Conrad, Lawrence Allan, and Reyman, Jonathan E., pp. 4972. Scientific Papers 30. Illinois State Museum, Springfield.Google Scholar
Koldehoff, Brad, and Walthall, John A. 2009 Dalton and the Early Holocene Midcontinent: Setting the Stage. In Archaic Societies: Diversity and Complexity across the Midcontinent, edited by Emerson, Thomas E., McElrath, Dale L., and Fortier, Andrew C., pp. 137151. State University of New York, Albany.Google Scholar
Kovarovic, Kris, Aiello, Leslie C., Cardini, Andrea, and Lockwood, Charles A. 2011 Discriminant Function Analyses in Archaeology: Are Classification Rates Too Good to Be True? Journal of Archaeological Science 38:30063018.CrossRefGoogle Scholar
Krishnamoorthy, Kalimuthu, and Lee, Meesook 2014 Improved Tests for the Equality of Normal Coefficients of Variation. Computational Statistics 29: 215232.CrossRefGoogle Scholar
Lycett, Stephen J. 2009 Are Victoria West Cores “Proto-Levallois”? A Phylogenetic Assessment. Journal of Human Evolution 56:175191.CrossRefGoogle Scholar
Lycett, Stephen J. 2015 Cultural Evolutionary Approaches to Artifact Variation over Time and Space: Basis, Progress, and Prospects. Journal of Archaeological Science 56:2131.CrossRefGoogle Scholar
Lycett, Stephen J., and Eren, Metin I. 2013 Levallois Economics: An Examination of “Waste” Production in Experimentally Produced Levallois Reduction Sequences. Journal of Archaeological Science 40:23842392.CrossRefGoogle Scholar
Lycett, Stephen J., von Cramon-Taubadel, Noreen, and Foley, Robert A. 2006 A Crossbeam Co-Ordinate Caliper for the Morphometric Analysis of Lithic Nuclei: A Description, Test and Empirical Examples of Application. Journal of Archaeological Science 33:847861.CrossRefGoogle Scholar
MacDonald, Douglas H. 2010 The Evolution of Folsom Fluting. Plains Anthropologist 44:3954.CrossRefGoogle Scholar
Mackie, Madeline. E., Surovell, Todd A., O'Brien, Michael, Kelly, Robert L., Pelton, Spencer, Vance Haynes, C. Jr., and Frison, George C. 2020 Confirming a Cultural Association at the La Prele Mammoth Site (48CO1401), Converse County, Wyoming. American Antiquity 85:554572.Google Scholar
MacLeod, Norman 2018 The Quantitative Assessment of Archaeological Artifact Groups: Beyond Geometric Morphometrics. Quaternary Science Reviews 201:319348.CrossRefGoogle Scholar
Maroco, João, Silva, Dina, Rodrigues, Ana, Guerreiro, Manuela, Santana, Isabel, and de Mendonça, Alexandre 2011 Data Mining Methods in the Prediction of Dementia: A Real-Data Comparison of the Accuracy, Sensitivity and Specificity of Linear Discriminant Analysis, Logistic Regression, Neural Networks, Support Vector Machines, Classification Trees and Random Forests. BMC Research Notes 4:299.CrossRefGoogle ScholarPubMed
Marwick, Ben, and Krishnamoorthy, Kalimuthu 2019 cvequality: Tests for the Equality of Coefficients of Variation from Multiple Groups. R Software Package Version 2.0. Electronic document, https://github.com/benmarwick/cvequality, accessed November 1, 2021.Google Scholar
Meltzer, David J. 2009 First Peoples in a New World: Colonizing Ice Age America. University of California Press, Berkeley.CrossRefGoogle Scholar
Miller, G. Logan 2013 Illuminating Activities at Paleo Crossing (33ME274) through Microwear Analysis. Lithic Technology 38:97108.Google Scholar
Morgan, Brooke, Eren, Metin I., Khreisheh, Nada, Hill, Genevieve, and Bradley, Bruce A. 2015 Clovis Bipolar Lithic Reduction at Paleo Crossing, Ohio: A Reinterpretation Based on the Examination of Experimental Replications. In Clovis: On the Edge of a New Understanding, edited by Smallwood, Ashley M. and Jennings, Thomas A., pp. 121144. Texas A&M University Press, College Station.Google Scholar
Morrow, Juliet E. 1995 Clovis Projectile Point Manufacture: A Perspective from the Ready/Lincoln Hills Site, 11JY46, Jersey County, Illinois. Midcontinental Journal of Archaeology 20:167191.Google Scholar
Morrow, Juliet E., Fiedel, Stuart J., Johnson, Donald L., Kornfeld, Marcel, Rutledge, Moye, and Raymond Wood, W. 2012 Pre-Clovis in Texas? A Critical Assessment of the “Buttermilk Creek Complex.” Journal of Archaeological Science 39:36773682.CrossRefGoogle Scholar
Morrow, Juliet E., and Morrow, Toby A. 1999 Geographic Variation in Fluted Projectile Points: A Hemispheric Perspective. American Antiquity 64:215230.CrossRefGoogle Scholar
Morse, Dan F. 1971 Recent Indications of Dalton Settlement Pattern in Northeast Arkansas. Southeastern Archaeological Conference Bulletin 13:510.Google Scholar
Newby, Paige, Bradley, James W., Spiess, Arthur, Shuman, Bryan, and Leduc, Phil 2005 A Paleoindian Response to Younger Dryas Climate Change. Quaternary Science Reviews 24:141154.CrossRefGoogle Scholar
Norris, James D., Stephens, Charles, and Eren, Metin I. 2019 Early-and Middle-Stage Fluted Stone Tool Bases Found Near Fox Lake, Wayne County Ohio: Clovis or Not? Journal of Archaeological Science: Reports 25:16.Google Scholar
O'Brien, Michael J. 2005 Evolutionism and North America's Archaeological Record. World Archaeology 37:2645.CrossRefGoogle Scholar
O'Brien, Michael J., Boulanger, Matthew T., Buchanan, Briggs, Collard, Mark, Lee Lyman, R., Darwent, John 2014 Innovation and Cultural Transmission in the American Paleolithic: Phylogenetic Analysis of Eastern Paleoindian Projectile-Point Classes. Journal of Anthropological Archaeology 34:100119.CrossRefGoogle Scholar
O'Brien, Michael J., and Lyman, R. Lee 2000 Applying Evolutionary Archaeology: A Systematic Approach. Kluwer Academic/Plenum, New York.CrossRefGoogle Scholar
O'Brien, Michael J., and Wood, W. Raymond 1998 The Prehistory of Missouri. University of Missouri Press, Columbia.Google Scholar
Pelton, Spencer R., Boyd, Joshua R., Rockwell, Heather, and Newton, Cody 2016 Younger Dryas-Aged Fluting, Cold, and Time Budgeting in the Great Plains and Rocky Mountains. PaleoAmerica 2:169-178.Google Scholar
Ray, Jack H. 2016 Projectile Point Types in Missouri and Portions of Adjacent States. Missouri Archaeological Society, Springfield.Google Scholar
Roberts, Frank H. H. Jr. 1935 A Folsom Complex: Preliminary Report on Investigations at the Lindenmeier Site in Northern Colorado. Smithsonian Miscellaneous Collections 94(4):135.Google Scholar
Rohlf, F. James, Loy, Anna, and Corti, Marco 1996 Morphometric Analysis of Old World Talpidae (Mammalia, Insectivora) Using Partial-Warp Scores. Systematic Biology 45:344362.CrossRefGoogle Scholar
Rohlf, F. James, and Marcus, Leslie F. 1993 A Revolution in Morphometrics. Trends in Ecology and Evolution 8(4):129132.CrossRefGoogle Scholar
Rollingson, Martha Ann, and Schwartz, Douglas W. 1966 Late Paleo-Indian and Early Archaic Manifestations in Western Kentucky. University of Kentucky Press, Lexington.Google Scholar
Schiffer, Michael B. 1975 An Alternative to Morse's Dalton Settlement Pattern Hypothesis. Plains Anthropologist 20:253266.CrossRefGoogle Scholar
Schneider, Caroline A., Rasband, Wayne S., and Eliceiri, Kevin W. 2012 NIH Image to ImageJ: 25 Years of Image Analysis. Nature Methods 9:671675.CrossRefGoogle ScholarPubMed
Selden, Robert Z. Jr., Dockall, John E., and Dubied, Morgane 2020 A Quantitative Assessment of Intraspecific Morphological Variation in Gahagan Bifaces from the Southern Caddo Area and Central Texas. Southeastern Archaeology 39:125145.Google Scholar
Sellet, Frédéric 2004 Beyond the Point: Projectile Manufacture and Behavioral Inference. Journal of Archaeological Science 31:15531566.CrossRefGoogle Scholar
Shoberg, Marilyn 2010 Functional Analysis of Clovis Tools. In Clovis Technology, edited by Bradley, Bruce A., Collins, Michael B., and Hemmings, Andrew C., pp. 138156. Archaeological Series 17. International Monographs in Prehistory, Ann Arbor, Michigan.Google Scholar
Sholts, Sabrina B., Stanford, Dennis J., Flores, Louise M., and Warmlander, Sebastian 2012 Flake Scar Patterns of Clovis Points Analyzed with a New Digital Morphometrics Approach: Evidence for Direct Transmission of Technological Knowledge across Early North America. Journal of Archaeological Science 39:30183026.CrossRefGoogle Scholar
Shott, Michael J. 1986 Technological Organization and Settlement Mobility: An Ethnographic Examination. Journal of Anthropological Research 42:1551.Google Scholar
Shott, Michael J. 2013 Human Colonization and Late Pleistocene Lithic Industries of the Americas. Quaternary International 285:150160.CrossRefGoogle Scholar
Shott, Michael J. 2020 Allometry and Resharpening in Experimental Folsom-Point Replicas: Analysis Using Inter-Landmark Distances. Journal of Archaeological Method and Theory 27:360380.CrossRefGoogle Scholar
Shott, Michael J., and Ballenger, Jesse A. M. 2007 Biface Reduction and the Measurement of Dalton Curation: A Southeastern United States Case Study. American Antiquity 72:153175.CrossRefGoogle Scholar
Smallwood, Ashley M. 2010 Clovis Biface Technology at the Topper Site, South Carolina: Evidence for Variation and Technological Flexibility. Journal of Archaeological Science 37:24132425.CrossRefGoogle Scholar
Smallwood, Ashley M. 2012 Clovis Technology and Settlement in the American Southeast: Using Biface Analysis to Evaluate Dispersal Models. American Antiquity 77:689713.CrossRefGoogle Scholar
Smallwood, Ashley M. 2015 Building Experimental Use-Wear Analogues for Clovis Biface Functions. Archaeological and Anthropological Sciences 7:1326.CrossRefGoogle Scholar
Smallwood, Ashley M., Jennings, Thomas A., Anderson, David G., and Ledbetter, Jerald 2015 Testing for Evidence of Paleoindian Responses to the Younger Dryas in Georgia, USA. Southeastern Archaeology 34:2345.Google Scholar
Smallwood, Ashley M., Jennings, Thomas A., Pevny, Charlotte D., and Anderson, David G. 2019 Paleoindian Projectile Point Diversity in the American Southeast: Evidence for the Mosaic Evolution of Point Design. PaleoAmerica 5:218230.CrossRefGoogle Scholar
Smallwood, Ashley M., Pevny, Charlotte D., Jennings, Thomas A., and Morrow, Juliet E. 2020 Projectile? Knife? Perforator? Using Actualistic Experiments to Build Models for Identifying Microscopic Usewear Traces on Dalton Points from the Brand Site, Arkansas, North America. Journal of Archaeological Science: Reports 31:102337. DOI:10.1016/j.jasrep.2020.102337.Google Scholar
Smith, Heather L., and Asher, Brendon 2019 Variability in Clovis Biface Morphology from the Type-Site, Blackwater Draw Locality 1. Paper presented at the 84th Annual Meeting of the Society for American Archaeology, Albuquerque, New Mexico.Google Scholar
Smith, Heather L., and DeWitt, Thomas J. 2016 The Northern Fluted Point Complex: Technological and Morphological Evidence of Adaptation and Risk in the Late Pleistocene-Early Holocene Arctic. Archaeological and Anthropological Sciences 9:17991823.CrossRefGoogle Scholar
Smith, Heather L., and Goebel, Ted 2018 Origins and Spread of Fluted-Point Technology in the Canadian Ice-Free Corridor and Eastern Beringia. PNAS 115:4116 4121.CrossRefGoogle ScholarPubMed
Smith, Heather L., Smallwood, Ashley M., and DeWitt, Thomas J. 2015 A Geometric Morphometric Exploration of Clovis Fluted Point Shape Variability. In Clovis: On the Edge of a New Understanding, edited by Smallwood, Ashley M. and Jennings, Thomas A., pp 161180. Texas A&M University Press, College Station.Google Scholar
Snyder, Brian J. 2017 Examination of Variation in Function among Early Paleoindian Weapon Systems on the Plains. Master's thesis, Department of Anthropology, Northern Arizona University, Flagstaff.Google Scholar
Story, Brett A., Eren, Metin I., Thomas, K., Buchanan, Briggs, and Meltzer, David J. 2019 Why Are Clovis Fluted Points More Resilient Than Non-Fluted Lanceolate Points? A Quantitative Assessment of Breakage Patterns between Experimental Models. Archaeometry 61:113.Google Scholar
Tankersley, Kenneth B. 1996 Ice Age Hunters and Gatherers. In The Prehistory of Kentucky, edited by Lewis, R. Barry, pp. 2138. University of Kentucky Press, Lexington.Google Scholar
Thomas, Kaitlyn A., Story, Brett, Eren, Metin I., Buchanan, Briggs, Andrews, Brian N., O'Brien, Michael J, and Meltzer, David J. 2017 Explaining the Origin of Fluting in North American Pleistocene Weaponry. Journal of Archaeological Science 81:2330.CrossRefGoogle Scholar
Thulman, David K. 2012 Discriminating Paleoindian Point Types from Florida Using Landmark Geometric Morphometrics. Journal of Archaeological Science 39:15991607.Google Scholar
Thulman, David K. 2019 The Age of the Dalton Culture: A Bayesian Analysis of the Radiocarbon Data. Southeastern Archaeology 38:171192. DOI:10.1080/0734578X.2018.1564643.CrossRefGoogle Scholar
Titmus, Gene L., and Woods, James C. 1991 A Closer Look at Margin “Grinding” on Folsom and Clovis Points. Journal of California and Great Basin Anthropology 13:194203.Google Scholar
Tune, Jesse W. 2015 Characterizing Cumberland Fluted Biface Morphology and Technological Organization. Journal of Archaeological Science 6:310320.Google Scholar
VanPool, Todd L., and Leonard, Robert D. 2011 Quantitative Analysis in Archaeology. Wiley-Blackwell, Oxford.Google Scholar
Wang, Li-Yang, and Marwick, Ben 2020 Standardization of Ceramic Shape: A Case Study of Iron Age Pottery from Northeastern Taiwan. Journal of Archaeological Science: Reports 33:102554. DOI:10.1016/j.jasrep.2020.102554.Google Scholar
Waters, Michael R., and Jennings, Thomas A. 2015 The Hogeye Clovis Cache of Texas. Texas A&M University Press, College Station.Google Scholar
Waters, Michael R., Pevny, Charlotte D., Carlson, David L., Dickens, William A., Smallwood, Ashley M., Minchak, Scott A., Bartelink, Eric, et al. 2011 A Clovis Workshop in Central Texas: Archaeological Investigations of Excavation Area 8 at the Gault Site. Texas A&M University Press, College Station.Google Scholar
Waters, Michael R., Stafford, Thomas W. Jr., and Carlson, David L. 2020 The Age of Clovis—13,050 to 12,750 cal yr B.P. Science Advances 6(43). DOI:10.1126/sciadv.aaz0455.CrossRefGoogle ScholarPubMed
Williams, Justin P., and Niquette, Richard M. 2019 Changes in Hafted Biface Resharpening during the Late Pleistocene and Early Holocene in the Central and Southeastern United States. Journal of Archaeological Science: Reports 25:575583.Google Scholar
Wormington, Marie H. 1957 Ancient Man in North America. Popular Series 4. Denver Museum of Natural History. Peerless, Denver.Google Scholar
Yerkes, Richard W., and Gaertner, Linda M. 1997 Microwear Analysis of Dalton Artifacts. In Sloan: A Paleoindian Dalton Cemetery in Arkansas, edited by Morse, Dan F., pp. 5871. Smithsonian Institution, Washington, DC.Google Scholar
Supplementary material: File

Smallwood et al. supplementary material

Smallwood et al. supplementary material 1

Download Smallwood et al. supplementary material(File)
File 13.5 KB
Supplementary material: File

Smallwood et al. supplementary material

Smallwood et al. supplementary material 2

Download Smallwood et al. supplementary material(File)
File 31.3 KB
Supplementary material: File

Smallwood et al. supplementary material

Figures S1-S3

Download Smallwood et al. supplementary material(File)
File 272.6 KB