Skip to main content Accessibility help
×
Home

Toward a function-based IT platform for variants redesign of household appliances

  • Margherita Peruzzini (a1), Roberto Raffaeli (a2), Marco Malatesta (a3) and Michele Germani (a3)

Abstract

Modular product design is an efficient strategy to let manufacturing companies meet the customers’ requirements by offering a wide variety and customization of products and significantly saving time and cost during engineering and production (Fei et al., 2011). Despite numerous approaches for function modeling and modular product design (Srinivasan et al., 2012; Eckert, 2013; Vermaas, 2013) that have been developed in the last decades, carrying out an efficient product variants’ design process is still an open issue for many manufacturing companies. The proposed approaches offer numerous ways to model information about product functionality, but each approach is useful and particularly well suited for different applications and domains (Summers et al., 2013). The present research compares the existing approaches for product variants design and defines a function-based model to support product design and redesign according to a modular framework, merging qualitative technical issues with business-oriented evaluation. Such a framework has been used to develop a multiuser IT platform, composed of a knowledge-based engine and four different tools to support designers and engineers in product variants creation, management, and configuration, from product functional modeling to cost estimation and life cycle assessment. The proposed model has been tested on industrial cases in the context of household appliances. Experimental results demonstrates that, after a preliminary context analysis and a proper knowledge base creation, such a model supports a more conscious decision-making and promote collaboration within an interdisciplinary design team. Finally, the case study shows the necessity, but in the meanwhile the insufficiency, of a functional decomposition as the only representation viewpoint.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Toward a function-based IT platform for variants redesign of household appliances
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Toward a function-based IT platform for variants redesign of household appliances
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Toward a function-based IT platform for variants redesign of household appliances
      Available formats
      ×

Copyright

Corresponding author

Reprint requests to: Margherita Peruzzini, Department of Engineering Enzo Ferrari, University of Modena and Reggio Emilia, via Vivarello 10, 41125 Modena, Italy. E-mail: margherita.peruzzini@unimore.it

References

Hide All
Ahmad, N., Wynn, D., & Clarkson, P. (2012). Change impact on a product and its redesign process: a tool for knowledge capture and reuse. Research in Engineering Design 24(3), 219244.
Baldwin, C.Y., & Clark, K.B. (2006). Modularity in the design of complex engineering systems. In Complex Engineered Systems—Science Meets Technology (Braha, D., Minai, A.A., & Bar-Yam, Y., Eds.), pp. 175205. Berlin: Springer.
Borjesson, F., & Hölttä, K. (2014). A module generation algorithm for product architecture based on component interactions and strategic drivers. Research in Engineering Design 25, 3151.
Caldwell, B., Thomas, J., Sen, C., Mocko, G.M., & Summers, J.D. (2012). The effects of language and pruning on function structure interpretability. Journal of Mechanical Design 134(6), 061001.
Cheng, H., & Chu, X. (2012). A network-based assessment approach for change impacts on complex product. Journal of Intelligent Manufacturing 23(4), 14191431.
Clarkson, P., Simons, C., & Eckert, C. (2004). Predicting change propagation in complex design. Journal of Mechanical Design 126(5), 788797.
Eckert, C. (2013). That which is not form: the practical challenges in using functional concepts in design. Artificial Intelligence in Engineering Design, Analysis and Manufacturing 27(3), 217231. doi:10.1017/S089006041300022X
Elgh, F. (2014). Automated engineer-to-order systems—a task-oriented approach to enable traceability of design rationale. International Journal of Agile Systems and Management 7 (3/4), 324347.
ElMaraghy, H., Schuh, G., ElMaraghy, W., Piller, F., Schönsleben, P., Tseng, M., & Bernard, A. (2013). Product variety management. CIRP Annals Manufacturing Technology 62(2), 629652.
Ericsson, A., & Erixon, G. (1999). Controlling Design Variants: Modular Product Platforms. New York: ASME.
Farrell, R., & Simpson, T. (2003). Product platform design to improve commonality in custom products. Journal of Intelligent Manufacturing 14, 541556.
Fei, G., Gao, J., Owodunni, D., & Tang, X. (2011). A method-driven and knowledge-based methodology for engineering design change management. Computer-Aided Design & Applications 8(3), 373382.
Felfernig, A., Hotz, L., Bagley, C., & Tiihonen, J. (2014). Knowledge-Based Configuration—From Research to Business Cases. San Francisco, CA: Kaufmann.
Frenken, K., & Mendritzki, S. (2012). Optimal modularity: a demonstration of the evolutionary advantage of modular architectures. Journal of Evolutionary Economics 22(5), 935956.
Germani, M., Mengoni, M., & Raffaeli, R. (2007). Multi-level representation for supporting the conceptual design phase of modular products. In The Future of Product Development, pp. 209224. Berlin: F.L. Krause.
Hirtz, J., Stone, R., McAdams, D., Szykman, S., & Wood, K. (2001). A functional basis for engineering design: reconciling and evolving previous efforts. Research in Engineering Design 13(2), 6582.
Hölttä, K., & Salonen, M. (2003). Comparing three modularity methods. Proc. ASME Design Engineering Technical Conf., Chicago, September 2–6.
Jiao, J., Simpson, T.W., & Siddique, Z. (2007). Product family design and platform based product development: a state-of-the-art review. Journal of Intelligent Manufacturing 18(1), 529.
Jiao, J., & Zhang, Y. (2005). Product portfolio identification based on association rule mining. Computer-Aided Design 37, 149172.
Kilpinen, M., Eckert, C., & Clarkson, P. (2009). Assessing impact analysis practice to improve change management capability. Proc. 17th Int. Conf. Engineering Design, Vol. 1, pp. 205–216. Stanford, CA: Design Society.
Kocar, V., & Akgunduz, A. (2010). ADVICE: a virtual environmental for engineering change management. Computer in Industry 61, 1528.
Koh, E., Caldwell, N., & Clarkson, P. (2012). A method to assess the effects of engineering change propagation. Research in Engineering Design 23(4), 329351.
Kurtoglu, T., & Tumer, I. (2008). A graph-based fault identification and propagation framework for functional design of complex systems. ASME Transactions Journal of Mechanical Design 130(5), 18.
Malatesta, M., Raffaeli, R., Mengoni, M., & Germani, M. (2013). Supporting the modification process of products through a change management tool. Proc. 19th Int. Conf. Engineering Design, Vol. 1, pp. 21–30, Seoul, August 19–22.
Otto, K., Hölttä-Otto, K., Simpson, T.W., Krause, D., Ripperda, S., & Moon, S.K. (2016). Global views on modular design research: linking alternative methods to support modular product family concept development. Journal of Mechanical Design 138(7), 071101-16.
Pahl, G., Beitz, W., Feldhusen, J., & Grote, K. (2007). Engineering Design: A Systematic Approach. London: Springer.
Pimmler, T., & Eppinger, S. (1994). Integration analysis of product decompositions. Proc. ASME Design Theory and Methodology Conf., Minneapolis, MN, September 11–14.
Pine, B.J. II (1993). Mass Customization. The New Frontier in Business Competition. Cambridge, MA: Harvard Business School Press.
Raffaeli, R., Malatesta, M., Marilungo, E., & Germani, M. (2013). An approach for managing engineering changes in product families. Proc. ASME 2013 Int. Design Engineering Technical Conf. Computers and Information in Engineering Conf., Portland, OR, August 4–7.
Raffaeli, R., Mengoni, M., & Germani, M. (2010). A software system for “Design for X” impact evaluations in redesign processes. Journal of Mechanical Engineering 56(11), 707717.
Sen, C., Summers, J.D., & Mocko, G.M. (2011). A protocol to formalise function verbs to support conservation-based model checking. Journal of Engineering Design 22(11–12), 765788.
Srinivasan, V., Chakrabarti, A., & Lindemann, U. (2012). A framework for describing functions in design. Proc. Int. Design Conf., pp. 1111–1122, Dubrovnik, Croatia, May 21–24.
Stjepandić, J., Ostrosi, E., Fougères, A.J., & Kurth, M. (2015.) Modularity and supporting tools and methods. In Concurrent Engineering in the 21th Century—Foundations, Developments and Challenges (Stjepandić, J., Wognum, N., & Verhagen, W.J.C., Eds.), pp. 389420. Berlin: Springer.
Stone, R., Wood, K., & Crawford, R. (2000). A heuristic method for identifying modules for product architectures. Design Studies 21(1), 531.
Summers, J.D., Eckert, C., & Goal, A. (2013). Function in engineering: benchmarking representations and models. Proc. 19th Int. Conf. Engineering Design, Vol. 2, pp. 223–232, Seoul, August 19–22.
Tiihonen, J. (2014). Support for configuration of physical products and services. PhD Thesis. Aalto University.
Ulrich, K., & Eppinger, S. (2012). Product Design and Development. New York: McGraw-Hill.
Vermaas, P.E. (2013). On the co-existence of engineering meanings of function: four responses and their methodological implications. Artificial Intelligence in Engineering Design, Analysis and Manufacturing 27(3), 191202.
Wan, X., Evers, P., & Dresner, M. (2012). Too much of a good thing: the impact of product variety on operations and sales performance. Journal of Operations Management 30, 316324.
Yang, D., & Dong, M. (2012). A constraint satisfaction approach to resolving product configuration conflicts. Advanced Engineering Informatics 26, 592602.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed