Skip to main content Accessibility help
×
Home

Contents:

Information:

  • Access
  • Cited by 2

Actions:

      • Send article to Kindle

        To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

        Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

        Find out more about the Kindle Personal Document Service.

        Special Issue: Engineering applications of representations of function, Part 1
        Available formats
        ×

        Send article to Dropbox

        To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

        Special Issue: Engineering applications of representations of function, Part 1
        Available formats
        ×

        Send article to Google Drive

        To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

        Special Issue: Engineering applications of representations of function, Part 1
        Available formats
        ×
Export citation

Extract

In engineering design, the end goal is the creation of an artifact, product, system, or process that fulfills some functional requirements at some desired level of performance. As such, knowledge of functionality is essential in a wide variety of tasks in engineering activities, including modeling, generation, modification, visualization, explanation, evaluation, diagnosis, and repair of these artifacts and processes. A formal representation of functionality is essential for supporting any of these activities on computers. The goal of Parts 1 and 2 of this Special Issue is to bring together the state of knowledge of representing functionality in engineering applications from both the engineering and the artificial intelligence (AI) research communities.

In engineering design, the end goal is the creation of an artifact, product, system, or process that fulfills some functional requirements at some desired level of performance. As such, knowledge of functionality is essential in a wide variety of tasks in engineering activities, including modeling, generation, modification, visualization, explanation, evaluation, diagnosis, and repair of these artifacts and processes. A formal representation of functionality is essential for supporting any of these activities on computers. The goal of Parts 1 and 2 of this Special Issue is to bring together the state of knowledge of representing functionality in engineering applications from both the engineering and the artificial intelligence (AI) research communities.

The idea for this Special Issue grew out of common themes that emerged from research reported at ASME Design Engineering Technical Conferences, Design Society International Conference on Engineering Design, and other conferences and workshops focused on engineering design and its applications. Of particular interest, it seemed that the engineering design and AI communities were tackling similar topics and, in some instances, duplicating each other's efforts. In engineering design research, automated concept generation and embodiment problems are the impetus for engineers to delve into the AI domain. For the AI community, engineering design continues to offer a rich source of problems for applying and extending the current state of the art. One underlying theme that both communities wrestle with is how to represent product design information in a way that is not limited to specific componentry or limited domains so that it can be reused in synthesis activities. The notion of product functionality has been extensively studied over the past several decades, and it provides a way to capture design information for reuse in a variety of different works.

The selection of papers in Parts 1 and 2 of this Special Issue highlights the engineering applications of representations of function in the core areas of functional reasoning (Far & Elamy, Part 1), function-based representations (Chakrabarti et al., Part 1; Van Wie et al., Part 1), function-based design methodologies (Umeda et al., Part 2; Wood & Dym, Part 2), and conceptual design AI support (Sridharan & Campbell, Part 2; Wilhems, Part 2). As Editors, we are struck by the underlying similarities in many of these papers, even though they overtly tackle different issues and use different terminology. The invited paper by Chandrasekaran (Part 1) makes this point about the general study of function representations in engineering design. Although much work remains in this interdisciplinary area, this Special Issue suggests that researchers are closing in on the fundamental representations needed to represent function in AI applications of engineering design.

Special thanks go to Dave Brown and the AIEDAM Editorial Board for their vigorous support in making this Special Issue possible.