Skip to main content Accessibility help
×
Home

A bridge to systems thinking in engineering design: An examination of students’ ability to identify functions at varying levels of abstraction

  • Megan Tomko (a1), Jacob Nelson (a2), Robert L. Nagel (a2), Matthew Bohm (a3) and Julie Linsey (a1)...

Abstract

This paper aims to situate functional abstraction in light of systems thinking. While function does not extensively appear in systems thinking literature, the literature does identify function as part of systems thinking that enables us to recognize and connect that function has a role in building a systems thinking approach for students. A systems thinking approach is valuable for students since it helps them view a system holistically. In this research, we measure how well students are able to abstract function. We asked students to generate functions for two different products and examined how students taught functional modeling and function enumeration compare to students who are only taught function enumeration. The student responses were examined using a rubric that we developed and validated for assessing function. This rubric may be used to classify functions by correctness (correct, partially correct, and incorrect) and categories (high level, interface, low level, and ambiguous). On questions where students were not explicitly asked to write a high-level function or low-level function, and so on, students who were taught functional modeling were able to better demonstrate systems thinking in their responses (low-level and interface functions) than those students who were only taught function enumeration.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      A bridge to systems thinking in engineering design: An examination of students’ ability to identify functions at varying levels of abstraction
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      A bridge to systems thinking in engineering design: An examination of students’ ability to identify functions at varying levels of abstraction
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      A bridge to systems thinking in engineering design: An examination of students’ ability to identify functions at varying levels of abstraction
      Available formats
      ×

Copyright

Corresponding author

Reprint requests to: Robert Nagel, Department of Engineering, James Madison University, 801 Carrier Drive, MSC 4113, Harrisonburg, VA 22807, USA. E-mail: nagelrl@jmu.edu

References

Hide All
Camelia, F., Ferris, T.L.J., & Cropley, D.H. (2015). Development and initial validation of an instrument to measure students' learning about systems thinking: the affective domain. IEEE Systems Journal. Advance online publiction. doi:10.1109/JSYST.2015.2488022
Caulfield, C.W., & Maj, S.P. (2001). A case for systems thinking and system dynamics. Proc. 2001 IEEE Int. Conf. Systems, Man, and Cybernetics, Tucson, AZ, October 7–10.
Chakrabarti, A. (1998). Supporting two views of function in mechanical design. Proc. 15th AAAI National Conf. AI, Madison, WI, July 27–30.
Chakrabarti, A., Srinivasan, V., Ranjan, B.S.C., & Lindemann, U. (2013). A case for multiple views of function in design based on a common definition. Artificial Intelligence for Engineering Design, Analysis and Manufacturing 27(3), 271279.
Chan, W.T. (2015). The role of systems thinking in systems engineering, design, and management. Journal of Civil Engineering and Science Application 17(3), 126132.
Chandrasekaran, B., & Josephson, J.R. (2000). Function in device representation. Engineering With Computers 16(3–4), 162177. doi:10.1007/s003660070003
Chittaro, L., & Kumar, A.N. (1998). Reasoning about function and its applications to engineering. Artificial Intelligence in Engineering 12(4), 331336. doi:10.1016/s0954-1810(97)10008-5
Crilly, N. (2010). The roles that artefacts play: technical, social and aesthetic functions. Design Studies 31(4), 311344. doi:10.1016/j.destud.2010.04.002
Deng, Y.M. (2002). Function and behavior representation in conceptual mechanical design. Artificial Intelligence for Engineering Design, Analysis and Manufacturing 16(5), 343362. doi:10.1017/s0890060402165024
Derro, M.E., & Williams, C.R. (2009). Behavioral competencies of highly regarded systems engineers at NASA. Proc. 2009 IEEE Aerospace Conf., Big Sky, MT, March 7–14.
Eckert, C. (2013). That which is not form: the practical challenges in using functional concepts in design. Artificial Intelligence for Engineering Design, Analysis and Manufacturing 27(3), 217231. doi:10.1017/S089006041300022X
Eckert, C., Alink, T., Ruckpaul, A., & Albers, A. (2011). Different notions of function: results from an experiment on the analysis of an existing product. Journal of Engineering Design 22(11–12), 811837. doi:10.1080/09544828.2011.603297
Erden, M.S., Komoto, H., Tvan Beek, T.J., D'Amelio, V., Echavarria, E., & Tomiyama, T. (2008). A review of function modeling: approaches and applications. Artificial Intelligence for Engineering Design, Analysis and Manufacturing 22(2), 147169. doi:10.1017/s0890060408000103
Ernst Eder, W. (2014). A strategy for teaching and learning of systematic design engineering. Proc. 2014 Canadian Engineering Education Association, Canmore, Alberta, June 8–11.
Frank, M. (2000). Engineering systems thinking and systems thinking. Systems Engineering 3(3), 163168. doi:10.1002/1520-6858(200033)3:3<163::AID-SYS5>3.0.CO;2-T
Frank, M. (2006). Knowledge, abilities, cognitive characteristics and behavioral competences of engineers with high capacity for engineering systems thinking (CEST). Systems Engineering 9(2), 91103. doi:10.1002/sys.20048
Goel, A.K. (2013). A 30-year case study and 15 principles: implications of an artificial intelligence methodology for functional modeling. Artificial Intelligence for Engineering Design, Analysis and Manufacturing 27(3), 203215. doi:10.1017/s0890060413000218
Goel, A.K., & Davies, J. (2011). Artificial intelligence. In Cambridge Handbook of Intelligence (Sternberg, R., & Kauffman, S., Eds.). Cambridge: Cambridge University Press.
Hirtz, J., Stone, R., McAdams, D., Szykman, S., & Wood, K. (2002). A functional basis for engineering design: reconciling and evolving previous efforts. Research in Engineering Design 13(2), 6582.
Hundal, M. (1990). A systematic method for developing function structures, solutions and concept variants. Mechanism and Machine Theory 25(3), 243256. doi:10.1016/0094-114X(90)90027-H
Keuneke, A.M. (1991). Device representation—the significance of functional knowledge. IEEE Expert-Intelligent Systems & Their Applications 6(2), 2225. doi:10.1109/64.79705
Kitamura, Y., & Mizoguchi, R. (2003). Ontology-based description of functional design knowledge and its use in a functional way server. Expert Systems With Applications 24(2), 153166. doi:10.1016/S0957-4174(02)00138-0.
Koller, R. (1985). Konstruktionslehre für den Maschinenbau [Mechanical Engineering Design]. Berlin: Springer-Verlag.
Kordova, S.K., Ribnikov, G., & Frank, M. (2015). Developing systems thinking among engineers: recent study findings. Proc. 9th Annual IEEE Int. Systems Conf. (SysCon), Vancouver, British Columbia, April 13–16.
Kurfman, M., Stone, R., van Wie, M., Wood, K., & Otto, K. (2000). Theoretical underpinnings of functional modeling: preliminary experimental studies. Proc. DETC2000, Baltimore, MD, September 10–13.
Langley, P. (2012). The cognitive systems paradigm. Advances in Cognitive Systems 1, 313.
Linsey, J., Viswanathan, V., & Gadwal, A. (2010). The influence of design problem complexity on the attainment of design skills and student perceptions. Proc. IEEE EDUCON 2010, Madrid, April 14–16.
Little, A., Wood, K., & McAdams, D. (1997). Functional analysis: a fundamental empirical study for reverse engineering, benchmarking and redesign. Proc. 1997 Design Engineering Technical Conf., Sacramento, CA, September 14–17.
McHugh, Mary L. (2012). Interrater reliability: the kappa statistic. Biochemia Medica 22(3), 276282.
Miles, L. (1972). Techniques of Value Analysis and Engineering, Vol. 2. New York: McGraw-Hill.
Nagel, R., & Bohm, M. (2011). On teaching functionality and functional modeling in an engineering curriculum. Proc. ASME Design Engineering and Technical Conf. Computers and Information in Engineering Conf., Washington, DC, August 28–31.
Nagel, R.L., Bohm, M.R., Cole, J., & Shepard, P. (2012). An algorithmic approach to teaching functionality. Proc. ASME 2012 Int. Design Engineering Technical Conf. Computers and Information in Engineering Conf., Chicago, August 12–15.
Nagel, R.L., Bohm, M.R., & Linsey, J.S. (2016). Evaluating the impact of teaching function in an engineering design curriculum. Proc. 2016 ASEE Annual Conf. Exposition, New Orleans, LA, June 26–29.
Nagel, R.L., Bohm, M.R., Linsey, J.S., & Riggs, M.K. (2015). Improving students' functional modeling skills: a modeling approach and a scoring rubric. Journal of Mechanical Design 137(5), 051102. doi:10.1115/1.4029585
Nagel, R.L., Bohm, M.R., Stone, R.B., & McAdams, D.A. (2007). A representation of carrier flows for functional design. Proc. 16th Int. Conf. Engineering Design, Paris, August 28–31.
Pahl, G., & Beitz, W. (1996). Engineering Design: A Systematic Approach. Berlin: Springer-Verlag.
Pahl, G., Beitz, W., Schulz, H., & Jarecki, U. (2007). Engineering Design: A Systematic Approach (Wallace, K., Ed.), 3rd ed. London: Springer-Verlag.
Richmond, B. (1991). Systems Thinking: Four Key Questions. Watkinsville, GA: High Performance Systems, Inc.
Rodenacker, W. (1971). Methodisches Konstruieren [Methodical Design]. Berlin: Springer.
Roth, K.H. (1981). Foundation of methodical procedures in design. Design Studies 2(2), 107115. doi:10.1016/0142-694X(81)90007-7
Senge, P.M. (1990). The Fifth Discipline: The Art and Practice of Learning Organization. New York: Doubleday/Currency.
Sireli, A.Y., & Mengers, C.A. (2009). Need for change towards systems thinking in the U.S. nuclear industry. IEEE Systems Journal 3(2), 239253. doi:10.1109/JSYST.2009.2017390
Srinivasan, V., Chakrabarti, A., & Lindemann, U. (2012). A framework for describing functions in design. Proc. Int. Design Conf., Dubrovnik, Croatia, May 21–24.
Stave, K.A., & Hopper, M. (2007). What constitutes systems thinking: a proposed taxonomy. Proc. 25th Int. Conf. System Dynamics Society, Boston, July 29–August 2.
Summers, J., Eckert, C., & Goel, A. (2017). Function in engineering: benchmarking representations and models. Artificial Intelligence for Engineering Design, Analysis and Manufacturing 31(4), 401412.
Szykman, S., Racz, J., & Sriram, R. (1999). The representation of function in computer-based design. Proc. ASME Design Engineering Technical Conf. Computers and Information in Engineering Conf., Las Vegas, NV, September 12–15.
Valerdi, R., & Rouse, W.B. (2010). When systems thinking is not a natural act. Proc. 2010 4th Annual IEEE Systems Conf., San Diego, CA, April 5–8.
Vermaas, P.E. (2013). The coexistence of engineering meanings of function: four responses and their methodological implications. Artificial Intelligence for Engineering Design, Analysis and Manufacturing 27(3), 191202. doi:10.1017/s0890060413000206

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed