Skip to main content Accessibility help
×
Home

Wind-tunnel tests of a heavy-class helicopter optimised for drag reduction*

  • G. Gibertini (a1), A. Zanotti (a1), G. Droandi (a1), D. Grassi (a1), G. Campanardi (a1), F. Auteri (a1), A. Aceti (a1) and A. Le Pape (a2)...

Abstract

Wind-tunnel tests of a heavy-class helicopter model were carried out to evaluate the effectiveness of several components optimised for drag reduction by computational fluid dynamics analysis. The optimised components included different hub-cap configurations, a fairing for blade attachments and the sponsons. Moreover, the effects of vortex generators positioned on the back ramp were investigated. The optimisation effect was evaluated by comparison of the drag measurements carried out for both the original and the optimised helicopter configurations. The comprehensive experimental campaign involved the use of different measurement techniques. Indeed, pressure measurements and stereo particle image velocimetry surveys were performed to achieve a physical insight about the results of load measurements. The test activity confirms the achievement of an overall reduction of about 6% of the original model drag at cruise attitude.

Copyright

Corresponding author

Footnotes

Hide All
*

The original version of this article was published with an incorrect list of authors. A notice detailing this has been published and the error rectified in the online and print PDF and HTML copies.

Footnotes

References

Hide All
1. Martin, D.M., Mort, R.W., Squires, P.K. and Young, L.A. Hub and pylon fairing integration for helicopter drag reduction, American Helicopter Society 47th Annual Forum, 6-8 May 1991, Phoenix, Arizona, US.
2. Allan, B.G. and Schaeffler, N.W. Numerical investigation of rotorcraft fuselage drag reduction using active flow control, American Helicopter Society 67th Annual Forum, 3-5 May 2011, Virginia Beach, Virginia, US.
3. Lienard, C., Allan, B.G., Le Pape, A. and Schaeffler, N.W. Comparing numerical and experimental results for drag reduction by active flow control applied to a generic rotorcraft fuselage, American Helicopter Society 71st Annual Forum, 5-7 May 2015, Virginia Beach, Virginia, US.
4. Ben-Hamou, E., Arad, E. and Seifert, A. Generic transport aft-body drag reduction using active flow control, Flow Turbulence Combust, 2007, 78, pp 365382.
5. Breitsamter, C., Grawunder, M. and Ress, R. Aerodynamic design optimisation for a helicopter configuration including a rotating rotor head, 29th International Congress of the Aeronautical Sciences, 7-12 September 2014, St. Petersburg, Russia.
6. Green, R.B., Giuni, M., Cervinka, J., Zacho, D., Austin, P., Smith, S., Desvigne, D. and Alfano, D. The clean sky ‘CARD’ project: wind tunnel measurements of a model helicopter rotor and fuselage drag, 41st European Rotorcraft Forum, 1-4 September 2015, Munich, Germany.
7. Raffel, M., De Gregorio, F., Groot, K.D., Schneider, O., Sheng, W., Gibertini, G. and Seraudie, A. On the generation of a helicopter aerodynamic database, Aeronautical Journal, 2011, 115, pp 103112.
8. Antoniadis, A.F., Drikakis, D., Zhong, B., Barakos, G., Steijl, R., Biava, M., Vigevano, L., Brocklehurst, A., Boelens, O., Dietz, M., Embacher, M. and Khier, W. Assessment of CFD methods against experimental flow measurements for helicopter flows, Aerospace Science and Technology, 2012, 19, pp 86100.
9. Biava, M., Khier, W. and Vigevano, L. CFD prediction of air flow past a full helicopter configuration, Aerospace Science and Technology, 2012, 19, pp 318.
10. Mulleners, K., Kindler, K. and Raffel, M. Dynamic stall on a fully equipped helicopter model, Aerospace Science and Technology, 2012, 19, pp 7276.
11. De Gregorio, F. Flow field characterization and interactional aerodynamics analysis of a complete helicopter, Aerospace Science and Technology, 2012, 19, pp 1936.
12. Khier, W. Computational investigation of advanced hub fairing configurations to reduce helicopter drag, 40th European Rotorcraft Forum, 2-5 September 2014, Southampton, UK.
13. Boniface, J.C. A Computational framework for helicopter fuselage drag reduction using vortex generators, American Helicopter Society 70th Annual Forum, 20-22 May 2014, Montreal, Quebec, Canada.
14. Lemmens, Y., Decours, J., Fijalek, M. and Hakkart, J. Development of active horizontal stabilizer, 38th European Rotorcraft Forum, 4-7 September 2012, Amsterdam, The Netherlands.
15. Gibertini, G., Auteri, F., Campanardi, G., Droandi, G., Grassi, D., Le Pape, A. and Zanotti, A. A test rig to assess the effectiveness of drag reduction devices on a heavy-class helicopter, 41st European Rotorcraft Forum, 1-4 September 2015, Munich, Germany.
16. Zanotti, A., Ermacora, M., Campanardi, G. and Gibertini, G. Stereo particle image velocimetry measurements of perpendicular blade vortex interaction over an oscillating airfoil, Experiments in Fluids, 2014, 55, (9), pp 113.
17. PIVview 2C/3C, User Manual, PIVTEC, www.pivtec.com, 2010.
18. Raffel, M., Willert, C., Wereley, S. and Kompenhans, J. Particle Image Velocimetry – A Practical Guide, 2007, Springer-Verlag, Berlin.
19. Zanotti, A., Ermacora, M., Campanardi, G. and Gibertini, G. Experimental investigation of perpendicular vortex interaction by stereo particle image velocimetry, 71st American Helicopter Society Annual Forum, 5-7 May 2015, Virginia Beach, Virginia, US.
20. De Gregorio, F., Pengel, K. and Kindler, K. A comprehensive PIV measurement campaign on a fully equipped helicopter model, Experiments in Fluids, 2012, 53, pp 3749.

Keywords

Wind-tunnel tests of a heavy-class helicopter optimised for drag reduction*

  • G. Gibertini (a1), A. Zanotti (a1), G. Droandi (a1), D. Grassi (a1), G. Campanardi (a1), F. Auteri (a1), A. Aceti (a1) and A. Le Pape (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed